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Abstract

Our goal in this research is twofold: to develop clinical performance databases of

cancer patients, and to conduct data mining and machine learning studies on collected

patient records. We use these studies to develop models for predicting cancer patient

medical outcomes. The clinical database is developed in conjunction with surgeons

and oncologists at UMass Memorial Hospital. Aspects of the database design and

representation of patient narrative are discussed here. Current predictive model design

in medical literature is dominated by linear and logistic regression techniques. We seek

to show that novel machine learning methods can perform as well or better than these

traditional techniques.

Our machine learning focus for this thesis is on pancreatic cancer patients. Classifi-

cation and regression prediction targets include patient survival, wellbeing scores, and

disease characteristics. Information research in oncology is often constrained by type

variation, missing attributes, high dimensionality, skewed class distribution, and small

data sets. We compensate for these difficulties using preprocessing, meta-learning, and

other algorithmic methods during data analysis. The predictive accuracy and regres-

sion error of various machine learning models are presented as results, as are t-tests

comparing these to the accuracy of traditional regression methods. In most cases, it is

shown that the novel machine learning prediction methods offer comparable or superior

performance. We conclude with an analysis of results and discussion of future research

possibilities.
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1 Introduction

The pursuit of cancer research has become one of the most important scientific endeavors of

the 21st century. The Cancer Genome Project defines cancer research as “the intense scien-

tific effort to understand the development of cancer and identify potential therapies” [Ins]. In

2004, the American Cancer Society announced that cancer had officially replaced heart dis-

ease as the highest disease-related cause of death for Americans under the age of 85. Over 1.3

million new cancer cases occurred in the United States in 2005, and it is estimated that one

out of every three Americans will be affected by some form of cancer in their lifetime [Soc].

Most major life science fields are already involved extensively in the field of cancer re-

search. Biology and medical science have been an integral part of cancer study since the

time of the Ancient Greeks. However, as technologies and therapies evolve in the mod-

ern era, there is an increasing demand for specialized advances from the field of computer

science. Just a few of computer science’s contributions to cancer research include diagnos-

tic tools, predictive modeling, imaging and data analysis, bioinformatics, medical training

applications, and collaborative research databases. Discoveries from computer science are

already implemented in a wide variety of cancer therapies, including surgery, radiotherapy,

chemotherapy, diagnostic imaging, immunotherapy, and genetic therapy.

Study of clinical performance is one of cancer research’s most important research sub-

jects, as it directly concerns the patient’s wellbeing. Clinical performance refers to a patient’s

response to applied medical therapy. Response factors may include changes in health, pro-

gression of illness, disease pathology, and systemic behaviors of the body. More refined

analysis of clinical performance is always needed, given the frequent complexity and diffi-

culty of cancer treatment. These analyses may include building predictive models for clinical

performance generated using the data mining and machine learning techniques from the field

of computer science.

Our goal in this research is twofold: to develop clinical performance databases of cancer

patients, and to conduct data mining and machine learning studies on the collected patient
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records. We present a novel database designed by UMass Memorial Medical School on-

cologists for representing highly-detailed clinical performance of breast and gastrointestinal

cancer patients. Machine learning techniques will be applied to the patient contents of this

database to generate a variety of predictive models. The tools and techniques of data mining

and machine learning are ideal for this type of analysis. We present and evaluate models

based on pancreatic cancer patient data for predicting disease characteristics and prognosis

of survival and wellbeing.

This research is a joint effort between the WPI Computer Science Department and UMass

Memorial Medical School. The clinical database is composed of data from patients seen at the

UMass Memorial Department of Surgical Oncology. This project is advised by Prof. Carolina

Ruiz, whose research focus is machine learning and data mining. Prof. George Heineman

of WPI and Prof. Sergio Alvarez of Boston College provided additional computer science

advising. Medical advising is provided by the Surgical Oncology staff at UMass Memorial,

particularly Dr. Giles Whalen and Mary Sullivan NP for the gastrointestinal module, and

Dr. Robert Quinlan for the breast module. A grant provided by UMass Memorial in August

2005 funded this research.
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2 Medical Background

Cancer refers to diseases resulting from uncontrolled cell growth in regions known as neo-

plasms or tumors. A tumor may refer to any distinct mass in a tissue or organ, and its growth

may either be benign or malignant. Malignant tumors are characterized by their ability to

spread to surrounding local tissue (invasion) or distant sites in the body (metastasis). The

malignant tumors discussed in this research are a form of cancer known as carcinoma, or

cancers arising from epithelial cells. Tumor growth may be caused by damage or mutations

to cell DNA from different factors, including hereditary conditions, environmental exposure,

and infectious disease. Chemical or physical agents which trigger cancer-causing DNA mu-

tations are referred to as carcinogens. Symptoms of cancer depend on the site of the body

affected, the nature of the tumor, and metastatic spread of the disease.

Oncology is the branch of medicine which deals with the diagnosis and treatment of ma-

lignant tumors. Various methods exist to treat cancer. Resection is the surgical excision of

tumor growth from bodily tissue. Chemotherapy is the systemic or localized application of

antineoplastic drugs to destroy or retard the development of tumor growth. Radiotherapy

refers to treatments which use irradiation to destroy cancerous cells. Palliation collectively

refers to the methods intended to relieve cancer symptoms rather than effect cure. Pallia-

tive measures may include stenting, anastomosis, feeding tubes, nerve blocks, and various

forms of surgery, chemotherapy, and radiotherapy, as well as other medications for symptom

management. The intention of a resection may be either curative or palliative. Tumor im-

munotherapy is a biological protocol which uses methods such as vaccination to trigger an

immune system response which destroys cancerous cells. Gene counseling is a series of DNA

tests which establish susceptibility of a patient or their family to certain forms of cancer.

An important aspect of patient clinical performance research is quantification of a pa-

tient’s wellbeing. Measurements of wellbeing are important in evaluating treatment response

and qualifications for different forms of care. Throughout the course of their treatment, pa-

tient overall health and performance status may be rated by quality-of-life (QoL) scores
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Score Status
100% Normal, No Complaints, No Signs of Disease
90% Capable of Normal Activity, Few Symptoms or Signs of Disease
80% Normal Activity with Some Difficulty, Some Symptoms or Signs
70% Caring for Self, Not Capable of Normal Activity or Work
60% Requiring Some Help, Can Take Care of Most Personal Requirements
50% Requires Help Often, Requires Frequent Medical Care
40% Disabled, Requires Special Care and Help
30% Severely Disabled, Hospital Admission Indicated but No Risk of Death
20% Very Ill, Urgently Requiring Admission, Requires Treatment
10% Moribund, Rapidly Progressive Fatal Disease Processes
0% Death

Table 1: QoL/Karnofsky Scores

Score Status
0 Asymptomatic
1 Symptomatic but Completely Ambulant
2 Symptomatic, <50% in Bed During the Day
3 Symptomatic, >50% in Bed, but Not Bedbound
4 Bedbound
5 Death

Table 2: ECOG Scores

(also known as Karnofsky scores), which ranges 0-100%, or Eastern Cooperative Oncol-

ogy Group (ECOG) scores, which ranges 0-5. Tables 1 and 2 detail the criteria for these

scores [KB49, OC82]. For the purpose of this thesis, patient wellbeing will be measured

using the ECOG system.

Different factors may be used to describe the nature of tumors. Histology refers to the

microscopic structure of tumor tissue. The behavior and severity of a cancer may vary de-

pending on its histologic composition. Adenocarcinoma is carcinoma which develops within

glandular epithelium which typically behaves in a very malignant fashion. Neuroendocrine

tumors grow in nervous or endocrine tissue. For some cancers, including malignancies of

the pancreas, these neuroendocrine tumors tend to behave in a more indolent fashion than

adenocarcinomas. Cysts refer to closed cavities of glandular epithelium where retained se-
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cretions are accumulated, and may behave in a benign or malignant fashion. Two common

histologic forms of breast cancer are lobular and ductal types. The study of cells at a mi-

croscopic level is referred to as cytology. At the microscopic level, the symptoms of cancer

are often influenced by the growth and penetration of tumors into bodily structures. Lymph

nodes are small bodies along lymphatic vessels which filter bacteria and foreign bodies. The

presence of tumorous tissue within regional lymph nodes is an important prognostic factor

for many types of cancer. The penetration of tumors into vasculature, or blood vessels, can

be an important factor in determining the spread and resectability of the disease.

The American Joint Committee on Cancer (AJCC) maintains a staging system to pro-

vide a unified methodology for describing cancer. Malignant tumors are classified by TNM

staging, which refers to Tumor, Node, and Metastasis. Each parameter is paired with a

number from a discrete range to indicate disease stage. The meaning of these parameters

differs by cancer etiology. T refers to primary tumor size and ranges from 0 to 4 or ’is’ for in

situ growth. N refers to regional lymph node involvement and ranges from 0 to 3. M refers

to metastatis to distant organs and is denoted 0 if absent and 1 if present. Other parameters

may be used to describe cancer. R is used to denote tumor growth on margins of surgically

excised tissue: 0 for clean margins, 1 for microscopic tumor growth, and 2 for gross tumor

growth. L and V (0-1) denote the absence or presence of tumor invasion into lymphatic

vessels and veins. G (1-4) stands for the grade or differentiation between tumor cells and

surrounding normal cells. The criteria for staging depends on the tumor location and his-

tology. Most tumor forms use TNM staging, but not all use the full range. In all staging

systems, a parameter paired with X stands for an unknown or unevaluated quantity [oC04].

A variety of tools are used to diagnose cancer. Serum studies refer to blood tests, which

may include nutritional levels, liver functions, and molecular tumor markers. Biopsy refers to

a small sample of tumor tissue taken to evaluate its histologic composition and malignancy.

Biopsies may be taken in a variety of ways, including fine-needle aspiration (FNA), core-

cutting needle, incisional biopsy, and excisional biopsy. Cancer is frequently diagnosed using
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imaging studies. Quantifying the accuracy and reliability of imaging studies is a crucial

research topic. X-rays are the process of visualizing an internal body image by catching high-

energy photons on photographic film. A computed axial tomography (CT or CAT) creates a

three-dimensional internal view of a patient using a series of sectional x-rays across a common

axis. Ultrasound uses ultrasonic waves to create a sonographic visualization a body’s internal

structure. Endoscopic ultrasound (EUS) is an ultrasound study generated by a thin, flexible

ultrasound probe passed through the gastrointestinal tract. Magnetic resonance imaging

(MRI) uses the magnetic resonance of photons to create a high-contrast density image.

Biopsies are often taken using guidance by imaging studies. Different diagnoses are used

depending on the type and location of cancer [VD93].
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2.1 Pancreatic Cancer Background

Pancreatic cancer remains a challenging disease for physicians, oncologists, and surgeons,

and is the machine learning analytic focus of this thesis. Here, pancreatic cancer is a general

term for cancer of the pancreas and periampullary region. The pancreas is a long gland

which sits behind the stomach and secretes digestive juices into the small intestine and

bloodstream. The periampullary region refers to the area containing the duodenum, distal

common bile duct, and ampulla of Vater. The duodenum refers to the upper part of the

small intestine, which starts from the lower end of the stomach and extends to the jejunum

(middle small intestine). The distal common bile duct is the portion of the excretory passage

close to the duodenum which carries bile from the liver. The ampulla of Vater is a dilation

in the duodenal wall through which the common bile duct and pancreatic duct empty into

the small intestine. Please refer to Figures 1 and 2 [Gra95, Cen].

Tumors of the pancreatic and periampullary region are known for a high degree of mor-

tality and morbidity. This disease stands as the fourth largest cancer killer in the country,

even though it only accounts for 2% of total cancer diagnoses. Approximately 25,000 new

patients are diagnosed with this disease in the United States each year; median survival from

time of diagnosis is six months, with five-year survival rates at 3% [Bre04]. The severity and

treatment of these cancers depend largely on their locations and histologic types. The most

frequently occurring types are adenocarcinomas, which are the most aggressive and have the

highest associated mortality rates. A less common and more indolent form of the disease

are neuroendocrine or islet cell tumors. Intraductal papillary mucinous neoplasms (IPMNs

or IPMT’s) are cystic pancreatic tumors which can progress to cancers.
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Figure 1: Gray’s Anatomy - Pancreas and Periampullary Region [Gra95]
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Figure 2: Digestive System with Common Bile Duct Illustrated [Cen]
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Pancreatic cancer typically presents itself through non-specific symptoms, abdominal

pain and painless jaundice being the most frequent. Risk factors include age, smoking,

obesity, diabetes, diets high in meat, chronic pancreatitis, and genetic family history. Di-

agnosis is typically performed using chest x-rays, serum studies, abdominal CT scans, and

endoscopic ultrasound. Imaging studies be used to determine tumor size, regional lymph

note involvement, and distant metastatic spread. Biopsies taken by fine needle aspiration

(FNA) during endoscopic ultrasound can be used to predict tumor histology and malignancy.

Nuclear tumor markers such as CEA and CA19-9, as well as nutritional and liver function

serum levels, can confirm the systemic presence of pancreatic cancer or evaluate its effects. In

preliminary evaluation, approximately 15% of patients are deemed as potentially resectable,

40% as locally advanced/unresectable, and 45% as metastatic or equivocal.

TNM staging for pancreatic cancer determines the treatment course and prognosis of

disease. The T-stage in pancreatic cancer refers to the tumor’s size and penetration into sur-

rounding gastrointestinal anatomy. A simplified version of the AJCC staging criteria [oC04]

is presented in Table 3. Regional lymph node involvement as denoted by N-stage and pres-

ence of metastatis as denoted by M-stage is presented in Tables 4 and 5. Tumor spread in

pancreatic cancer may involve vascular structures, which impacts disease spread and diffi-

culty of resection. Vascular structures which may be invaded include the celiac axis, hepatic

artery, superior mesenteric artery, superior mesenteric vein, inferior vena cava, portal vein,

and splenic vein. If a tumor penetrates a venous structure, then sections of the vein may be

resected. However, arterial penetrations cannot be resected given current medical technol-

ogy, although studies are being done. The microscopic penetration of tumor into a vascular

structure is denoted by V-staging as described above.

The most common surgical procedure to treat pancreatic cancer is a Whipple procedure,

or pancreaticoduodenectomy. The procedure involves removal of the distal half of stomach,

gall bladder, distal common bile duct, head of the pancreas, duodenum, proximal jejunum,

and regional lymph nodes. The remaining anatomy is anastomosed together to reconstruct

10



T-Stage Criteria
TX Primary tumor cannot be assessed
T0 No evidence of primary tumor
Tis Carcinoma in situ
T1 Tumor limited to pancreas and measures 2 cm or

less in greatest dimension, without blood vessel involvement
T2 Tumor greater than 2 cm in greatest dimension, still

limited to the pancreas, without involve any blood vessels
T3 Any tumor that extends beyond the pancreas, does not

involve the celiac axis or superior mesenteric artery.
T4 Any tumor that invades the superior mesenteric artery

or the celiac axis (unresectable cancer)

Table 3: Pancreatic Cancer T-Staging

N-Stage Criteria
NX Regional lymph node involvement cannot be assessed
N0 No evidence of regional lymph node involvement
N1 Presence of regional lymph node involvement

Table 4: Pancreatic Cancer N-Staging

M-Stage Criteria
MX Distant metastasis cannot be assessed
M0 No evidence of distant metastasis
M1 Presence of distant metastasis

Table 5: Pancreatic Cancer M-Staging
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a working digestive tract. The pre and post-surgical anatomy of a Whipple procedure are

shown in Figures 3 and 4 [Cli]. The surgical mortality rate of a Whipple procedure is ap-

proximately 5%, 3% in high-volume centers. Resective surgery is usually performed in most

circumstances where possible, as it represents the highest likelihood of complete cure. Rea-

sons not to resect include local tumor spread, involvement of vasculature, distant metastatis,

and patient unwillingness or inability to endure surgery.

Chemotherapy and radiotherapy are frequently applied as pancreatic cancer treatments.

The most common regimens of chemotherapy applied at UMass Memorial are 5-Flurouracil

and Gemcitabine. Cancer therapies may be either adjuvant (applied post-surgery) or neoad-

juvant (applied pre-surgery, frequently in an effort to reduce tumor size). Palliative measures

intended to alleviate but not cure disease include feeding tubes, stenting, gastric bypasses,

nerve blocks, and palliative chemo or radiotherapy. After initial treatment, patients are fol-

lowed at three-month intervals for the first two years, and six-month intervals for two to five

years, and yearly intervals afterwards. Factors monitored during follow-up include disease

status, recurrent symptoms, weight, serum markers, and general wellbeing scores.
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Figure 3: Whipple Procedure - Pre-Surgical Anatomy [Cli]
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Figure 4: Whipple Procedure - Post-Surgical Anatomy [Cli]
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3 Clinical Database Construction

The clinical database is where our patient information is collected. Our database was de-

veloped using Microsoft Access 2003 with Visual Basic scripting and SQL Server for data

storage. It is hoped that these additional cancer modules will be used in future analytic

work. Prof. George Heineman of WPI and [Szo82] provided many useful suggestions in

representing the patient treatment narrative within a software application.

Specific details pertaining to the patient medical factors are too complex to be discussed

here; for those interested, [VD93] provides an accessible discussion of clinical oncology for

both medical and non-medical audiences alike.

3.1 Gastrointestinal Cancer Database

For this project, database modules were developed for six major forms of gastrointestinal

cancer (pancreatic, biliary, esophageal, gastric, colorectal, and hepatocellular). Specific de-

sign of the gastrointestinal cancer modules were based on Dr. Whalen algorithms for patient

treatment. Portions of the table schema and interface were based on earlier work by Tiffany

Wei of UMass Memorial.

In this database, the major elements of patient treatment were decomposed into eight

categories:

• Presentation

• Medical History

• Diagnostic Tests

• Preliminary Outlook

• Treatment

• Surgical Resection Details/Reasons for Not Pursuing Resection
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• Pathology Reports

• Follow-Up

Each of these categories is represented by a table schema within the database. They

are related to a core patient record by a zero-to-many cardinality; this allows for a flexible,

efficient representation of what can often be a very complex clinical narrative.
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3.1.1 Pancreatic Cancer

Figure 5: Pancreatic Cancer Presentation Form

17



Figure 6: Pancreatic Cancer Presentation Schema

Figure 7: Pancreatic Cancer Medical History Form
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Figure 8: Pancreatic Cancer Medical History Table Schema
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Figure 9: Pancreatic Cancer Serums Studies Form

Figure 10: Pancreatic Cancer Serums Studies Table Schema
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Figure 11: Pancreatic Cancer Diagnostic Imaging Form

Figure 12: Pancreatic Cancer Diagnostic Imaging Table Schema
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Figure 13: Pancreatic Cancer Endoscopy Studies Form
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Figure 14: Pancreatic Cancer Endoscopy Studies Table Schema

Figure 15: Pancreatic Cancer Preliminary Outlook Form

Figure 16: Pancreatic Cancer Preliminary Outlook Table Schema
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Figure 17: Pancreatic Cancer Treatment Form
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Figure 18: Pancreatic Cancer Treatment Table Schema
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Figure 19: Pancreatic Cancer Resection Form

Figure 20: Pancreatic Cancer Resection Table Schema
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Figure 21: Pancreatic Cancer No Resection Form

Figure 22: Pancreatic Cancer No Resection Table Schema
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Figure 23: Pancreatic Cancer Pathology Form

Figure 24: Pancreatic Cancer Pathology Table Schema
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Figure 25: Pancreatic Cancer Follow-Up Form
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Figure 26: Pancreatic Cancer Follow-Up Table Schema
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3.1.2 Hepatocellular Cancer

Figure 27: Hepatocellular Cancer Presentation Form
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Figure 28: Hepatocellular Cancer Presentation Table Schema

Figure 29: Hepatocellular Cancer Medical History Form

32



Figure 30: Hepatocellular Cancer Medical History Table Schema
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Figure 31: Hepatocellular Cancer Serum Studies Form

Figure 32: Hepatocellular Cancer Serum Studies Table Schema
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Figure 33: Hepatocellular Cancer Diagnostic Imaging Form

Figure 34: Hepatocellular Cancer Diagnostic Imaging Table Schema
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Figure 35: Hepatocellular Cancer Preliminary Outlook Form

Figure 36: Hepatocellular Cancer Preliminary Outlook Table Schema
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Figure 37: Hepatocellular Cancer Treatment Form

Figure 38: Hepatocellular Cancer Treatment Table Schema
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Figure 39: Hepatocellular Cancer Ablation Form

Figure 40: Hepatocellular Cancer Ablation Table Schema
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Figure 41: Hepatocellular Cancer Resection Form
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Figure 42: Hepatocellular Cancer Resection Table Schema
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Figure 43: Hepatocellular Cancer No Resection Form

Figure 44: Hepatocellular Cancer No Resection Table Schema
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Figure 45: Hepatocellular Cancer Pathology Form

Figure 46: Hepatocellular Cancer Pathology Table Schema
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Figure 47: Hepatocellular Cancer Follow-Up Form
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Figure 48: Hepatocellular Cancer Follow-Up Table Schema
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3.1.3 Gall Bladder/Biliary Cancer

Figure 49: Gall Bladder/Biliary Cancer Presentation Form
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Figure 50: Gall Bladder/Biliary Cancer Presentation Table Schema

Figure 51: Gall Bladder/Biliary Cancer Medical History Form
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Figure 52: Gall Bladder/Biliary Cancer Medical History Table Schema
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Figure 53: Gall Bladder/Biliary Cancer Serum Studies Form

Figure 54: Gall Bladder/Biliary Cancer Serum Studies Table Schema
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Figure 55: Gall Bladder/Biliary Cancer Diagnostic Imaging Form

Figure 56: Gall Bladder/Biliary Cancer Diagnostic Imaging Table Schema
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Figure 57: Gall Bladder/Biliary Cancer Preliminary Outlook Form

Figure 58: Gall Bladder/Biliary Cancer Preliminary Outlook Table Schema
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Figure 59: Gall Bladder/Biliary Cancer Treatment Form

Figure 60: Gall Bladder/Biliary Cancer Treatment Table Schema
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Figure 61: Gall Bladder/Biliary Cancer Resection Form
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Figure 62: Gall Bladder/Biliary Cancer Resection Table Schema
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Figure 63: Gall Bladder/Biliary Cancer No Resection Form

Figure 64: Gall Bladder/Biliary Cancer No Resection Table Schema
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Figure 65: Gall Bladder/Biliary Cancer Pathology Form

Figure 66: Gall Bladder/Biliary Cancer Pathology Table Schema
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Figure 67: Gall Bladder/Biliary Cancer Follow-Up Form
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Figure 68: Gall Bladder/Biliary Cancer Follow-Up Table Schema
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3.1.4 Gastric Cancer

Figure 69: Gastric Cancer Presentation Form
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Figure 70: Gastric Cancer Presentation Table Schema

Figure 71: Gastric Cancer Medical History Form
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Figure 72: Gastric Cancer Medical History Table Schema
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Figure 73: Gastric Cancer Serum Studies Form

Figure 74: Gastric Cancer Serum Studies Table Schema
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Figure 75: Gastric Cancer Diagnostic Imaging Form

Figure 76: Gastric Cancer Diagnostic Imaging Table Schema
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Figure 77: Gastric Cancer Preliminary Outlook Form

Figure 78: Gastric Cancer Preliminary Outlook Table Schema
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Figure 79: Gastric Cancer Treatment Form

Figure 80: Gastric Cancer Treatment Table Schema
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Figure 81: Gastric Cancer Resection Form
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Figure 82: Gastric Cancer Resection Table Schema
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Figure 83: Gastric Cancer No Resection Form

Figure 84: Gastric Cancer No Resection Table Schema
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Figure 85: Gastric Cancer Pathology Form

Figure 86: Gastric Cancer Pathology Table Schema
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Figure 87: Gastric Cancer Follow-Up Form
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Figure 88: Gastric Cancer Follow-Up Table Schema
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3.1.5 Esophageal Cancer

Figure 89: Esophageal Cancer Presentation Form
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Figure 90: Esophageal Cancer Presentation Table Schema

Figure 91: Esophageal Cancer Medical History Form
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Figure 92: Esophageal Cancer Medical History Table Schema
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Figure 93: Esophageal Cancer Serum Studies Form

Figure 94: Esophageal Cancer Serum Studies Table Schema
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Figure 95: Esophageal Cancer Diagnostic Imaging Form

Figure 96: Esophageal Cancer Diagnostic Imaging Table Schema

75



Figure 97: Esophageal Cancer Preliminary Outlook Form

Figure 98: Esophageal Cancer Preliminary Outlook Table Schema
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Figure 99: Esophageal Cancer Treatment Form
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Figure 100: Esophageal Cancer Treatment Table Schema
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Figure 101: Esophageal Cancer Resection Form
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Figure 102: Esophageal Cancer Resection Table Schema
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Figure 103: Esophageal Cancer No Resection Form

Figure 104: Esophageal Cancer No Resection Table Schema
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Figure 105: Esophageal Cancer Pathology Form

Figure 106: Esophageal Cancer Pathology Table Schema
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Figure 107: Esophageal Cancer Follow-Up Form
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Figure 108: Esophageal Cancer Follow-Up Table Schema
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3.1.6 Colorectal Cancer

Figure 109: Colorectal Cancer Presentation Form
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Figure 110: Colorectal Cancer Presentation Table Schema

Figure 111: Colorectal Cancer Medical History Form
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Figure 112: Colorectal Cancer Medical History Table Schema
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Figure 113: Colorectal Cancer Serum Studies Form

Figure 114: Colorectal Cancer Serum Studies Table Schema
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Figure 115: Colorectal Cancer Diagnostic Imaging Form

Figure 116: Colorectal Cancer Diagnostic Imaging Table Schema
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Figure 117: Colorectal Cancer Preliminary Outlook Form
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Figure 118: Colorectal Cancer Preliminary Outlook Table Schema

Figure 119: Colorectal Cancer Treatment Form
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Figure 120: Colorectal Cancer Treatment Table Schema
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Figure 121: Colorectal Cancer Ablation Form

Figure 122: Colorectal Cancer Ablation Table Schema
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Figure 123: Colorectal Cancer Resection Form
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Figure 124: Colorectal Cancer Resection Table Schema

Figure 125: Colorectal Cancer No Resection Form
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Figure 126: Colorectal Cancer No Resection Table Schema

Figure 127: Colorectal Cancer Pathology Form

Figure 128: Colorectal Cancer Pathology Table Schema
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Figure 129: Colorectal Cancer Follow-Up Form
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Figure 130: Colorectal Cancer Follow-Up Table Schema
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3.2 Breast Cancer Database

The table schema and interface layout was designed with the help of UMass Medical School

oncologists through one-on-one work and efforts of a database committee headed by Dr.

Robert Quinlan.

Figure 131: Breast Cancer Screening Form
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Figure 132: Breast Cancer Screening Table Schema
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Figure 133: Breast Cancer Staging Form
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Figure 134: Breast Cancer Staging Table Schema
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Figure 135: Breast Cancer Resection Form
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Figure 136: Breast Cancer Resection Table Schema

Figure 137: Breast Cancer Chemotherapy Form
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Figure 138: Breast Cancer Chemotherapy Table Schema

105



Figure 139: Breast Cancer Radiotherapy Form
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Figure 140: Breast Cancer Radiotherapy Table Schema
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Figure 141: Breast Cancer Metastatic Treatment Form

Figure 142: Breast Cancer Metastatic Treatment Table Schema
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Figure 143: Breast Cancer Follow-Up Form
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Figure 144: Breast Cancer Follow-Up Table Schema

Figure 145: Breast Cancer Pathology Form
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Figure 146: Breast Cancer Pathology Table Schema

111



4 Clinical Performance Machine Learning -

Procedure & Design

4.1 Objectives of Analysis

As the pancreatic cancer module was the most developed and populated module within our

database, it was chosen to be the focus of our machine learning analysis. Given the aggres-

sive nature of these tumors, treatment decisions may often be a complex and ambiguous

task, particularly in regard to resective surgery. Physicians seek prediction models to aid

in the application of pancreatic cancer therapies in a clinical setting. Prediction models for

pancreatic cancer clinical factors, particularly survival rates, have been suggested based on

such factors as TNM staging, age, gender, presentation symptoms, medical comorbidities,

tumor histology, and relation of disease to vasculature. The majority of these predictive

models in modern oncology literature are generated by regression algorithms (e.g. linear

regression, logistic regression, and Cox’s proportional hazard model) [Tse04, FS03, SR02].

We have chosen a set of prediction targets for which to develop prediction models. We use

linear and logistic regression algorithms, as well as machine learning classification algorithms

(Bayesian methods, decision trees, k-nearest-neighbor, multi-layer perceptrons, etc.), to gen-

erate prediction models which are novel to pancreatic cancer research. Our hope is that these

novel prediction models may enlightened and improve upon current treatment methods. For

the preparation and analysis of our data, pre-processing algorithms will be used, including

supervised discretization and correlation-based feature selection. Meta-learning algorithms,

such as Bagging and AdaBoostM1, will be used to boost prediction model effectiveness. The

accuracy of these novel prediction models will be statistically compared to models generated

by traditional regression methods. The prediction targets studied will include tumor size,

T-staging, N-staging, vasculature involvement, tumor histology, malignancy, survival rates,

and ECOG scores at 6-month, 9-month, and 12-month follow-up intervals.
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4.2 Patient Data Set

Our study population is composed of pancreatic cancer patients seen over the past three years

at UMass Memorial hospital in Worcester, Massachusetts. Complete screening, treatment,

and follow-up records were retrospectively compiled from the hospital’s Meditech electronic

record system into our clinical database. Supervision by the medical staff was provided

for the interpretation of ambiguous or incomplete records. A total of 91 evaluations for

pancreatic cancer treatment were done between April 2003 and May 2006, representing 87

unique patients.

During these evaluations, all patients were screened for tumor resection using diagnostic

imaging and clinical evaluation. A total of 74 (81%) resections were subsequently performed

with a surgical success rate (complete excision of tumor) of 96%. Radiotherapy was assigned

in 37 (41%) evaluations, chemotherapy in 39 (43%) evaluations, and palliative measures in

11 (12%) evaluations. Among the tumors evaluated, 75 (82%) were deemed potentially re-

sectable, 7 (8%) locally advanced/unresectable, and 9 (10%) metastatic or equivocal. Patient

age at time of enrollment ranged from 28.5 to 85.1, with an average age of 63.9. Among

the patients, 49 (56%) were female. Distribution and availability of this study’s prediction

targets are detailed in Tables 6 through 15.

Our objective of effective data mining was challenged by various aspects of this data

set. Only a relatively small number of patient instances were available for the study, which

is a frequent concern in oncology research. Studies are often constrained by the number of

patients seen at an institution, or the rarity of certain disease etiologies [KBK+97]. However,

the number of patients available here has proved sufficient in other pancreatic cancer stud-

ies [DD04, SR02]. The limited number of patients is made more difficult by the inconsistent

availability of certain prediction targets. Factors such as T-stage, N-stage, tumor size, and

follow-up ECOG scores are not provided for all patients. Unavailability of clinical factors

also extends to many patient attributes.

In an effort to create a detailed clinical database, patient representations in table schemata
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are highly dimensional. After serializing attributes are removed, approximately 190 columns

of data are processed for each patient instance. Although this creates a very detailed clin-

ical representation of the patient, the attributes vary greatly in importance, accuracy, and

availability, which in turn impacts predictive model accuracy. Data typing also varies–both

nominal and numeric attributes are captured in a patient instance. As many aspects of the

clinical narrative are tracked, from presentation to treatment to follow-up, there are even

some theoretical questions as to whether a collaborative interpretation of these factors may

be the correct approach.

Finally, there is the issue of skewed class distribution in data sets. In pancreatic cancer,

certain values may frequently dominate various clinical factors. For example, in our patient

data set, a large majority of the histologic types are ductal adenocarcinoma, T3 value ac-

counts for 76% of all T-stagings, 82% tumors behave in a malignant fashion, and the majority

of patients do not require a vascular resection. These data patterns lend themselves to pre-

dictive models which underemphasize the importance of correctly predicting non-majority

class values.

In our experimental design, various data mining methods are incorporated to compensate

for these issues. Use of meta-learning algorithms helps compensate for small data sets and

reduces the effect of over-fitting. Supervised discretization creates a uniformly typed set

of attributes. Feature selection algorithms pare highly dimensional groups of attributes to

smaller sets of independently behaving features which are highly correlated to the target

class. Future research will incorporate over-sampling techniques to improve models based

on skewed data sets. These techniques will be discussed more thoroughly in the following

section.
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Value Count
0.0 - 2.0 cm 19
2.0 - 3.2 cm 20
3.2 - 4.8 cm 18
4.8 cm - inf 17

N = 74

Table 6: Tumor Size Distribution

Value Count
T0 1
T1 2
T2 3
T3 39
T4 6

N = 51

Table 7: T-Stage Distribution

Value Count
N0 16
N1 34
N2 1

N = 51

Table 8: N-Stage Distribution

Value Count
True 13
False 61

N = 74

Table 9: Vasculature Involvement Distribution
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Value Count
Adenocarcinoma of Pancreas - NOS 24
Ampullary Adenocarcinoma 9
Benign Cyst 1
Cystadenoma 4
Distal Cholangiocarcinoma 1
Duodenal Adenocarcinoma 2
Ductal Adenocarcinoma of Pancreas 27
IPMN - Benign or CiS 11
MEN-I 1
Mucinous Cystic Neoplasm 1
Neuroendocrine 5
Pseudopapillary Tumor 1
Renal Mets 3
Von Hippel-Lindau Syndrome 1

N = 91

Table 10: Histology Distribution

Value Count
Benign 16
Malignant 75

N = 91

Table 11: Malignancy Distribution

Value Count
0 37
1 27
2 8

N = 68

Table 12: ECOG 6-Month Distribution

Value Count
0 33
1 13
2 7
3 4

N = 57

Table 13: ECOG 9-Month Distribution
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Value Count
0 23
1 12
2 7
3 2

N = 34

Table 14: ECOG 12-Month Distribution

Value Count
0 - 6 mo. 20
6 - 12 mo. 20
12 - inf mo. 20

N = 60

Table 15: Survival Distribution
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4.3 Data Mining and Machine Learning Algorithms Used

The following machine learning algorithms are used in our experiments to generate prediction

models. In creating prediction models, a target may be interpreted as a nominal (categorical)

or numeric class. The interpretation of the prediction target influence what machine learning

algorithms may be applied. Brief descriptions and research citations are provided. All

algorithm executions are run using the Weka machine learning workbench [IW05]. The

debug parameter is set to False for all algorithm executions.

4.3.1 Benchmark Algorithms

These algorithms generate prediction models which are used as performance benchmarks for

our remaining experiments.

• ZeroR - Rudimentary zero-knowledge algorithm used to predict entity classification.

ZeroR models in nominal prediction choose the most frequently occurring target clas-

sification across all available instances. ZeroR models in numeric prediction choose the

average target value of available instances [Mit97].

• Linear Regression - Algorithm which expresses a numeric class as a linear combina-

tion of weighted attributes. The weights of each attribute are calculated based on the

training data. Weights are chosen during model generation such that sum of squares of

differences between the training and prediction instances is minimized. Weka’s imple-

mentation of linear regression uses Akaike criterion for model selection. Weka parame-

ters used are attributeSelectionMethod = M5 method, eliminateColinearAttributes =

True, ridge = 1.0E-8 [Aka74, Dev95].

• Logistic Regression - Works in a similar fashion to linear regression in combining a

weighted set of attributes. Used for nominal targets. For dual-class targets, the lin-

ear model is based on a logit transformation of the target class. Multiple classes ar

generated using pairwise classification. Attribute weights are assigned by maximizing
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log-likelihood of the predictive model. Weka parameters used are maxIts = -1, ridge

= 1.0E-8 [lCvH92].

4.3.2 Classification Algorithms

Classification algorithms are used to generate prediction models for nominal targets and

binned ranges of numeric targets.

• OneR - Rudimentary algorithm which uses single-attribute models to predict entity

classification. Also known as 1R or Learn-One-Rule. OneR is known for reasonable

accuracy in characterizing experimental data in spite of its relative simplicity. Weka

parameters used are minBucketSize = 6 [Mit97].

• J48 - A Java implementation of the C4.5 decision tree learning algorithm. C4.5 is an

evolution of the basic ID3 decision tree algorithm which accounts for missing values,

continuous attributes, pruning of decision trees, and rule derivation. Weka parameters

used are binarySplits = False, confidenceFactor = 0.25, minNumObj = 2, numFolds =

3, reducedErrorPruning = False, saveInstanceData = False, seed = 1, subtreeRaising

= True, unpruned = False, useLaplace = False [IW05, Qui93].

• Locally Weighted Learning - Instance-based prediction model which weights training

instances in relation to their distance to the test instance. Closer instances are assigned

higher weight and more relevance to the prediction. Can be combined with most

classifier algorithms. Locally weighted learning plus Naive Bayes is known to be very

effective on small data sets and can outperform independent executions of Naive Bayes

and k-nearest-neighbor. Weka parameters used are KNN = -1, classifier = NaiveBayes,

dontNormalize = False, weightingKernel = 0 [FHP03, AMS97].

• K-Nearest-Neighbor - An instance-based model which produces a classification by

calculating the k-closest known members in instance space. Assumes attributes are

equally important and normalized. Space between attribute values is calculated using
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Euclidean distance. Value of k is determined by cross-validation. Weka parameters

used are KNN = varies by experiment, crossValidate = False, distanceWeighting =

No distance weighting, meanSquared = False, noNormalization = False, windowSize

= 0 [AKA91].

• Naive Bayes - The NaiveBayes algorithm is a predictive classifier based on probabil-

ity models rooted in Bayes Theorem. It assumes statistical independence amongst

the attributes in predicting a target classification. NaiveBayes offers surprising accu-

racy in characterizing data from a variety of domains despite its statistical simplicity.

Weka parameters used are useKernelEstimator = False, useSupervisedDiscretization

= False [Mit97].

• Bayes Net - Bayesian networks are directed acyclic graphs which represent complex

statistical relationships for attributes of an entity. Bayesian net predictors construct

a graph probability model for classification using a specified network evaluator and

network-space search function. Weka parameters used are BIFFile = null, estimator =

SimpleEstimator -A 0.5, searchAlgorithm = K2 -P [varies by experiment], useADTree

= False [IW05].

4.3.3 Regression Algorithms

Regression algorithms are used to generate prediction models for numeric classes.

• M5P - A Java implementation of the M5 algorithm. M5 is a decision tree predictor

which builds model trees based on information gain measures. These model trees split

the data into test outcomes, which are used to produce a set of multivariate linear

regression models. Weka allows both regression trees and model trees to be produced as

output. Weka parameters used are buildRegressionTree = False, minNumInstances =

4.0, saveInstances = False, unpruned = False, useUnsmoothed = False [IW05, Qui92].
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• Multi-layer Perceptron - A neural network which uses backpropagation to train network

connection weights. The number of layers for each model are determined during the

experiment. Attributes and numeric classes are normalized during execution. Weka

parameters used are GUI = false, autoBuild = False, decay = False, hiddenLayers =

varies by experiment, learningRate = 0.3, momentum = 0.2, nominalToBinaryFilter

= True, normalizeAttributes = True, normalizeNumericClass = True, randomSeed =

0, reset = True, trainingTime = 500, validationSetSize = 0, validationThreshold =

20 [IW05].

• Radial Basis Function Network - A variation on the multi-layer perceptron which is

implemented by a feedforward network. Computation at each hidden node is performed

using k-means computation of distance space. The output, or activation, of the node

depends on its distance from the input instance–closer distance generates stronger

activation. Similarity measures are calculated using a Gaussian activation function.

Network output is a linear combination of hidden node outputs. Weka parameters

used are clusteringSeed = 1, maxIts = -1, minStdDev = 0.1, numClusters = 2, ridge

= 1.0E-8 [MD89].

4.3.4 Data Preprocessing Algorithms

Data preprocessing methods allow us to achieve various representations of the clinical patient

data when conducting experiments. These can potentially improve accuracy of the prediction

models generated.

• Discretization - Numeric attribute data may be discretized to form nominal attributes.

Discretization is either a supervised or unsupervised process. Unsupervised discretiza-

tion proceeds by simply binning data into specified ranges. Supervised discretization

bins attributes relative to changes in the target classification. Here, we measure changes

in target classification using the Minimum Descriptive Length (MDL) principle. Weka
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parameters used for supervised discretization are attributeIndices = first-last, invert-

Selection = False, makeBinary = False, useBetterEncoding = False, useKononenko =

False [FI93].

• Feature Selection - Correlation-based Feature Selection (CFS) is an attribute-selection

algorithm used for eliminating noisy and redundant features in data sets. Attributes

are selected using heuristic search of correlation measurements. Optimal attribute sets

exhibit high correlation to their target class and low correlation to other attributes.

Feature selection is useful for paring down high-dimensional data. Weka parameters

used are evaluator = CfsSubsetEval, search = BestFirst -D 1 -N 5 [Hal98].

4.3.5 Meta-Learning Algorithm

Meta-learning algorithms are used to improve the accuracy of our machine learning tests.

Meta-learning refines models to be more robust against noisy data and less susceptible to

over-fitting, particularly when dealing with small data sets.

• AdaBoostM1 - AdaBoostM1 works by incrementally running classifiers on samples of

test data and combining them into an aggregate model. Each individual or weak clas-

sifier contributes to the aggregate model in proportion to its accuracy. After each

iteration, test data is reweighted based on incorrect aggregate classifications. This

boosts the emphasis of misclassified instances, which refines future weak classifier ex-

ecutions. Weka parameters used are classifier = varies by experiment, numIterations

= 10, seed = 1, useResampling = False, weightThreshold = 100 [FS96].

• Bagging - Bagging (or Bootstrap Aggregating) works similarly to Boosting by com-

bining the results of multiple classifiers into an aggregate model. Multiple prediction

models are trained and aggregated using equal-sized resamples from the training data.

Bagging is known to be particularly useful when small changes in data can imply large
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changes in classification. Weka parameters used are bagSizePercent = 100, calcOutOf-

Bag = False, classifier = varies by experiment, numIterations = 10, seed = 1 [Bre96].

• Stacking - The Stacking algorithm is a meta-learner which reduces individual bias by

combining multiple classifier types. First, a series of general classifiers generate level-0

prediction models from a given test set. Data assembled from the output of these

models is combined by another classifier to generate a level-1 prediction model. Weka

parameters used are classifiers = varies by experiment, metaClassifier = DecisionS-

tump, numFolds = 10, seed = 1 [Wol90].
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4.4 Experimental Design

Clinical prediction models are generated using classification for nominal targets and regres-

sion for numeric targets. The experiment names of nominal targets (which also include

binned numeric ranges) are listed in Table 16. The experiment names of numeric targets are

listed in Table 17.

Each experiment is performed using 10-fold cross-validation. As some of these experi-

ments are probabilistic in nature, they are repeated over 10 iterations with random seeding.

Performance of classification models are evaluated by calculating the average accuracy (per-

centage correct) classifications across these iterations. Regression models are evaluated by

calculating r-squared values (Equation 1), which define percentage of response variability

accounted for by the prediction model [Dev95].

r2 =
ESS

TSS
(1)

ESS stands for Explained Sum of Squares (Equation 2). It stands for the sum of squares

of the differences of the predicted independent variable (ŷi) within the regression model and

the overall average of actual independent variables, or grand mean (ȳ). TSS stands for Total

Sum of Squares (Equation 3). It stands for the sum of squares of the differences of the actual

independent variable (yi) and the grand mean.

ESS =
n∑

i=1

(ŷi − ȳ)2 (2)

TSS =

n∑

i=1

(yi − ȳ)2 (3)
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Experiment Prediction Target
C1 Tumor Size (binned)
C2 T-Stage
C3 N-Stage
C4 Vasculature Involvement
C5 Histology
C6 Malignancy
C7 ECOG 6-Month
C8 ECOG 9-Month
C9 ECOG 12-Month
C10 Survival (binned)

Table 16: Classification Experiments

Experiment Prediction Target
R1 Tumor Size
R2 ECOG 6-Month
R3 ECOG 9-Month
R4 ECOG 12-Month
R5 Survival

Table 17: Regression Experiments
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Category Symbol Algorithm

Rule-based
ZR ZeroR
1R OneR

Decision Trees J48 C4.5 Decision Trees

Lazy Evaluators

IB1 K-Nearest-Neighbor k=1
IB2 K-Nearest-Neighbor k=2
IB3 K-Nearest-Neighbor k=3
LWL Locally Weighted Learning w/ Naive Bayes

Bayesian Methods

BN1 Bayes Net p=1
BN2 Bayes Net p=2
BN3 Bayes Net p=3
NVB Naive Bayes

Regression LGR Logistic Regression

Table 18: Classification Algorithms

4.4.1 Classification Tests

The classification algorithms used and their associated parameters are described in Table 18.

Each classification algorithm was repeated using AdaBoostM1 (AB1) and Bagging (BG)

meta-learners.

Four data sets (A-D) based on each prediction target (C1-C10) were created from the

clinical database. Each data set was first anonymized and stripped of serializing attributes

(date of admission, medical record number, etc.). Numeric targets (tumor size, survival,

etc.) were binned into equal frequency numeric ranges so to be compatible with nominal

classification. Classification target ranges, including numeric bins, are described in Table 19.

Preprocessing methods were applied to each data set as described in Table 20. Supervised

discretization was used to create uniform nominal attributes, which occasionally produces

more accurate experimental results [IW05]. Attribute selection was used to pare down the

high dimensionality of the original data sets. Frequently, attribute selection produces more

accurate prediction models. It was also useful in generating a medically novel set of highly-

correlated, independently behaving attributes for the clinical factor in question.

126



Clinical Factors - Nominal Categories
Tumor Size 0 - 2.0 cm, 2.0 - 3.2 cm, 3.2 - 4.8 cm, 4.8 cm - inf
T-Stage TX - T4
N-Stage NX - N2
Vasculature Involvement Yes, No

Histology

Adenocarcinoma of Pancreas - NOS,
Ampullary Adenocarcinoma, Ductal Adeno of Pancreas,
Neuroendocrine, Duodenal Adenocarcinoma, Distal
Cholangiocarcinoma, Renal Mets, Cystadenoma,
IPMN - Benign or CiS, Benign Cyst

Malignancy Malignant, Benign
ECOG 6-Month 0 - 4 (Ref. Table 2)
ECOG 9-Month 0 - 4 (Ref. Table 2)
ECOG 12-Month 0 - 4 (Ref. Table 2)
Survival Rate 0 - 7.0 mo., 7.0 - 16.8 mo., 16.8 - inf

Table 19: Classification Target Values

Data Set Pre-processing Filters (ref. Section 4.3.4)

A

Class Discretization: Discrete target classes are
required for classification algorithms. Nominal target classes
are naturally discrete. Numeric target are discretized via
unsupervised equal-frequency binning.

B
Supervised Attributes Discretization: Instance attributes
are discretized via MDL method. Derived from Data Set A.

C
Correlation-based Feature Selection: Attribute subsets are chosen
based on the CFS method. Derived from Data Set A.

D
Correlation-based Feature Selection and Supervised Discretization:
Uses both MDL discretization and CFS attribute
selection. Derived from Data Set B.

Table 20: Classification Data Sets
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Category Symbol Algorithm
Rule-based ZR ZeroR

Decision Trees
M5M M5P w/ Model Trees
M5R M5P w/ Regression Trees

Neural Network
MLP Multi-layer Perceptron
RBF Radial Basis Function

Regression LNG Linear Regression

Table 21: Regression Algorithms

Clinical Factors - Numeric Ranges
Tumor Size 0.0 - 11.0 cm
ECOG 6-Month 0 - 2
ECOG 9-Month 0 - 3
ECOG 12-Month 0 - 3
Survival Rate 1.4 - 44.2 mo.

Table 22: Regression Experiments

4.4.2 Regression Tests

The regression algorithms used and their associated parameters are described in Table 21.

Regression target numeric ranges are described in Table 22. Each regression run is repeated

using Bagging (BG) meta-learners (AdaBoostM1 is unable to handle numeric targets). Ad-

ditionally, the Stacking (STK) meta-learner is used to combine the M5P decision trees, RBF

networks and linear regression models.

Two data sets (E-F) based on each prediction target (R1-R5) were created from the

clinical database. Data sets were anonymized and serializing attributes removed as with

classification tests. Attribute selection preprocessing methods were applied as described in

Table 23. Supervised discretization filtering was not applied as it requires a nominal target

class [FI93].
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Data Set Pre-processing Filters (ref. Section 4.3.4)

E
Unaltered Data Set: Uses original
instance data with numeric target classes.

F
Correlation-based Feature Selection: Attribute subsets are chosen
based on the CFS method. Derived from Data Set E.

Table 23: Regression Data Sets
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5 Clinical Performance Machine Learning -

Results & Analysis

For each experiment, we present result sets and graphs for basic algorithm executions and

executions using meta-learners. For classification tests, we conduct t-tests of performance of

algorithms versus logistic regression. For regression tests, t-tests are performed of algorithm

performance versus linear regression. All t-tests are performed with significance α = .05

[Dev95]. T-test results are denoted with ’=’ for statistically equivalent performance, ’+’ for

superior performance, and ’−’ for inferior performance.

5.1 C1 - Tumor Size

For the tumor size tests among N=74 patients, we predict tumor size of 4 numeric bins

which contain roughly equal numbers of patients. Distribute of target values is shown in

Table 6. Classification accuracy for tumor size prediction generally ranges from 40% to 55%.

The majority of algorithms performed comparably to logistic regression via t-testing. Data

sets with supervised discretization and attribute selection generally produced more accurate

results. No statistically significant change was seen when meta-learning was introduced.

Figure 147: Tumor Size - Accuracy Results (Percentage)
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Figure 148: Tumor Size - Accuracy Results (Percentage) - AdaBoostM1

Figure 149: Tumor Size - Accuracy Results (Percentage) - Bagging
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Figure 150: Tumor Size - Results Graph
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Classification -  Tumor Size - 
AdaBoostM1
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Figure 151: Tumor Size - Results Graph - AdaBoostM1
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Classification -  Tumor Size - Bagging
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Figure 152: Tumor Size - Results Graph - Bagging

Figure 153: Tumor Size - T-Test vs. Logistic Regression
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Figure 154: Tumor Size - T-Test vs. Logistic Regression - AdaBoostM1

Figure 155: Tumor Size - T-Test vs. Logistic Regression - Bagging
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5.2 C2 - T-Stage

For the t-staging tests among N=51 patients, we predict t-stage of 5 classes which are dom-

inated by value T3 (approx. 75% of patients). Distribute of target values is shown in

Table 7. Classification accuracy for t-size prediction generally ranges from 70% to 80%.

Unfortunately, analysis of the associated confusion matrices show that prediction dominates

for the majority T3 class and under-predicts the remaining values. The majority of algo-

rithms in A and B data sets performed better than logistic regression via t-testing–this seems

due more to logistic regression’s unusually poor performance for these sets. Data sets with

supervised discretization and attribute selection generally produced results of comparable

accuracy. No statistically significant change was seen when meta-learning was introduced.

Figure 156: T-Stage - Accuracy Results (Percentage)

Figure 157: T-Stage - Accuracy Results (Percentage) - AdaBoostM1
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Figure 158: T-Stage - Accuracy Results (Percentage) - Bagging
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Figure 159: T-Stage - Results Graph
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Classification -  T-Stage - AdaBoostM1
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Figure 160: T-Stage - Results Graph - AdaBoostM1
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Classification -  T-Stage - Bagging
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Figure 161: T-Stage - Results Graph - Bagging

Figure 162: T-Stage - T-Test vs. Logistic Regression
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Figure 163: T-Stage - T-Test vs. Logistic Regression - AdaBoostM1

Figure 164: T-Stage - T-Test vs. Logistic Regression - Bagging
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5.3 C3 - N-Stage

For the n-staging tests among N=51 patients, we predict n-stage of 3 classes which are dom-

inated by value N1 (approx. 2:1 ratio to remaining values). Distribute of target values is

shown in Table 8. Classification accuracy for n-size prediction generally ranges from 55%

to 85%. The majority of algorithms in the original A data sets performed better than lo-

gistic regression via t-testing–particulary k-nearest-neighbor, locally-weighted-learning, and

Bayesian nets. For the remaining data sets, algorithms generally performed equally. Data

sets with supervised discretization and attribute selection generally produced results with

higher accuracy. No statistically significant change was seen when meta-learning was intro-

duced.

Figure 165: N-Stage - Accuracy Results (Percentage)

Figure 166: N-Stage - Accuracy Results (Percentage) - AdaBoostM1
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Figure 167: N-Stage - Accuracy Results (Percentage) - Bagging
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Figure 168: N-Stage - Results Graph
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Classification -  N-Stage - AdaBoostM1
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Figure 169: N-Stage - Results Graph - AdaBoostM1
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Classification -  N-Stage - Bagging
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Figure 170: N-Stage - Results Graph - Bagging

Figure 171: N-Stage - T-Test vs. Logistic Regression
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Figure 172: N-Stage - T-Test vs. Logistic Regression - AdaBoostM1

Figure 173: N-Stage - T-Test vs. Logistic Regression - Bagging
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5.4 C4 - Vascular Involvement

For the vascular involvement tests among N=74 patients, we predict the values of 2 classes

which are dominated by ’false’ values (approx. 80% of patients). Distribute of target values

is shown in Table 9. Classification accuracy for vascular involvement prediction generally

ranges from 75% to 85%. Analysis of the associated confusion matrices show that prediction

dominates for the majority ’false’ class and under-predicts the remaining values. Data sets

with supervised discretization and attribute selection generally produced results with higher

accuracy. No statistically significant change was seen when meta-learning was introduced.

Figure 174: Vascular Involvement - Accuracy Results (Percentage)

Figure 175: Vascular Involvement - Accuracy Results (Percentage) - AdaBoostM1

Figure 176: Vascular Involvement - Accuracy Results (Percentage) - Bagging
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Figure 177: Vascular Involvement - Results Graph
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Figure 178: Vascular Involvement - Results Graph - AdaBoostM1
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Classification -  Vasculature - Bagging
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Figure 179: Vascular Involvement - Results Graph - Bagging

Figure 180: Vascular Involvement - T-Test vs. Logistic Regression
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Figure 181: Vascular Involvement - T-Test vs. Logistic Regression - AdaBoostM1

Figure 182: Vascular Involvement - T-Test vs. Logistic Regression - Bagging

150



5.5 C5 - Histology

For the histology tests among N=91 patients, we predict value of 14 target class values

which are dominated by ’Adenocarcinoma of Pancreas - NOS’ and ’Ductal Adenocarcinoma

of Pancreas’ (these histology values dominate approximately 55% of instances). Distribute

of target values is shown in Table 10. Classification accuracy for histology prediction models

generally range from 35% to 55%. Analysis of the associated confusion matrices show that

prediction dominates for the majority classes and ’IPMN - Benign or CiS’ while under-

predicting the remaining values. Data sets with supervised discretization and attribute

selection combined with Bayesian net predictions generally produced results with higher

accuracy than logistic regression via t-tests. Remaining machine learning algorithms were

comparable to logistic regression accuracy in most cases. No statistically significant change

was seen when meta-learning was introduced. High-performance models based on histology

classification are presented in Section 6.1.

Figure 183: Histology - Accuracy Results (Percentage)

Figure 184: Histology - Accuracy Results (Percentage) - AdaBoostM1
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Figure 185: Histology - Accuracy Results (Percentage) - Bagging

Classification -  Histology

20.00

25.00

30.00

35.00

40.00

45.00

50.00

55.00

60.00

LGR ZR 1R J48 IB1 IB2 IB3 LWL NVB BN1 BN2 BN3

Classification Method

A
c

c
u

ra
c

y

A

B

C

D

Figure 186: Histology - Results Graph
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Figure 187: Histology - Results Graph - AdaBoostM1

153



Classification -  Histology - Bagging
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Figure 188: Histology - Results Graph - Bagging

Figure 189: Histology - T-Test vs. Logistic Regression
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Figure 190: Histology - T-Test vs. Logistic Regression - AdaBoostM1

Figure 191: Histology - T-Test vs. Logistic Regression - Bagging
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5.6 C6 - Malignancy

For the malignancy tests among N=91 patients, we predict value of 2 classes which are

dominated by ’Malignant’ values (approx. 80% of cases). Distribute of target values is shown

in Table 11. Classification accuracy for malignancy prediction generally ranges from 70% to

85%. Analysis of the associated confusion matrices show a reasonable spread between the

majority classes and minority values. Data sets with supervised discretization and attribute

selection generally produced results with higher accuracy. Classification algorithms were

t-test comparable to logistic regression accuracy in most cases. No statistically significant

change was seen when meta-learning was introduced.

Figure 192: Malignancy - Accuracy Results (Percentage)

Figure 193: Malignancy - Accuracy Results (Percentage) - AdaBoostM1

Figure 194: Malignancy - Accuracy Results (Percentage) - Bagging
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Figure 195: Malignancy - Results Graph
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Figure 196: Malignancy - Results Graph - AdaBoostM1
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Classification -  Malignancy - Bagging
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Figure 197: Malignancy - Results Graph - Bagging

Figure 198: Malignancy - T-Test vs. Logistic Regression
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Figure 199: Malignancy - T-Test vs. Logistic Regression - AdaBoostM1

Figure 200: Malignancy - T-Test vs. Logistic Regression - Bagging
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5.7 C7 - ECOG 6-Month

For ECOG 6-Month tests among N=72 patients, we predict value of 3 classes which are rea-

sonably well-distributed (ECOG values represented are those available among instances.).

Distribution of target values is shown in Table 12. Classification accuracy for ECOG pre-

diction generally ranges from 55% to 75%. Data sets with supervised discretization and at-

tribute selection generally produced results with higher accuracy. Classification algorithms

were t-test comparable to logistic regression accuracy in most cases. No statistically signifi-

cant change was seen when meta-learning was introduced.

Figure 201: ECOG 6-Month - Accuracy Results (Percentage)

Figure 202: ECOG 6-Month - Accuracy Results (Percentage) - AdaBoostM1

Figure 203: ECOG 6-Month - Accuracy Results (Percentage) - Bagging
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Figure 204: ECOG 6-Month - Results Graph
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Figure 205: ECOG 6-Month - Results Graph - AdaBoostM1
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Figure 206: ECOG 6-Month - Results Graph - Bagging

Figure 207: ECOG 6-Month - T-Test vs. Logistic Regression
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Figure 208: ECOG 6-Month - T-Test vs. Logistic Regression - AdaBoostM1

Figure 209: ECOG 6-Month - T-Test vs. Logistic Regression - Bagging
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5.8 C8 - ECOG 9-Month

For ECOG 9-Month tests among N=57 patients, we predict value of 4 classes which are

reasonably well-distributed (ECOG values represented are those available among instances.).

Distribute of target values is shown in Table 13. Classification accuracy for ECOG prediction

generally ranges from 45% to 70%. Data sets with supervised discretization and attribute

selection generally produced results with higher accuracy. Classification algorithms were

t-test comparable to logistic regression accuracy in most cases. No statistically significant

change was seen when meta-learning was introduced.

Figure 210: ECOG 9-Month - Accuracy Results (Percentage)

Figure 211: ECOG 9-Month - Accuracy Results (Percentage) - AdaBoostM1

Figure 212: ECOG 9-Month - Accuracy Results (Percentage) - Bagging
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Figure 213: ECOG 9-Month - Results Graph
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Figure 214: ECOG 9-Month - Results Graph - AdaBoostM1
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Figure 215: ECOG 9-Month - Results Graph - Bagging

Figure 216: ECOG 9-Month - T-Test vs. Logistic Regression
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Figure 217: ECOG 9-Month - T-Test vs. Logistic Regression - AdaBoostM1

Figure 218: ECOG 9-Month - T-Test vs. Logistic Regression - Bagging
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5.9 C9 - ECOG 12-Month

For ECOG 12-Month tests among N=44 patients, we predict value of 4 classes which are

reasonable well distributed (ECOG values represented are those available among instances.).

Distribute of target values is shown in Table 14. Classification accuracy for ECOG pre-

diction generally ranges from 35% to 55%. The majority of algorithms in A and B data

sets performed better than logistic regression via t-testing; again, this seems due more to

logistic regression’s poor performance on these sets. Data sets with supervised discretization

and attribute selection generally produced results with equivalent accuracy. Classification

algorithms in C and D sets were t-test comparable to logistic regression accuracy in most

cases. No statistically significant change was seen when meta-learning was introduced.

Figure 219: ECOG 12-Month - Accuracy Results (Percentage)

Figure 220: ECOG 12-Month - Accuracy Results (Percentage) - AdaBoostM1
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Figure 221: ECOG 12-Month - Accuracy Results (Percentage) - Bagging
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Figure 222: ECOG 12-Month - Results Graph
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Figure 223: ECOG 12-Month - Results Graph - AdaBoostM1
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Figure 224: ECOG 12-Month - Results Graph - Bagging

Figure 225: ECOG 12-Month - T-Test vs. Logistic Regression
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Figure 226: ECOG 12-Month - T-Test vs. Logistic Regression - AdaBoostM1

Figure 227: ECOG 12-Month - T-Test vs. Logistic Regression - Bagging
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5.10 C10 - Survival

For survival tests among N=60 patients, we predict value of 4 numeric ranges which are

evenly distributed between bins. Distribute of target values is shown in Table 15. Classifi-

cation accuracy for survival prediction generally ranges from 40% to 60%. Naive Bayes and

Bayesian nets in A and B data sets performed better than logistic regression via t-testing–a

notable result. Data sets with supervised discretization and attribute selection generally

produced results with higher accuracy. Remaining machine learning algorithms were t-test

comparable to logistic regression accuracy in most cases. No statistically significant change

was seen when meta-learning was introduced.

Figure 228: Survival - Accuracy Results (Percentage)

Figure 229: Survival - Accuracy Results (Percentage) - AdaBoostM1

Figure 230: Survival - Accuracy Results (Percentage) - Bagging
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25.00

30.00

35.00

40.00

45.00

50.00

55.00

60.00

65.00

LGR ZR 1R J48 IB1 IB2 IB3 LWL NVB BN1 BN2 BN3

Classification Method

A
c

c
u

ra
c

y

A

B

C

D

Figure 231: Survival - Results Graph
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Classification - Survival - AdaBoostM1
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Figure 232: Survival - Results Graph - AdaBoostM1
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Classification - Survival - Bagging
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Figure 233: Survival - Results Graph - Bagging

Figure 234: Survival - T-Test vs. Logistic Regression
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Figure 235: Survival - T-Test vs. Logistic Regression - AdaBoostM1

Figure 236: Survival - T-Test vs. Logistic Regression - Bagging
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5.11 R1 - Tumor Size

For tumor-size regression tests among N=74 patients, we predict numeric values ranging

from 0 to 11 cm. Distribute of target values is shown in Table 6. Regression r-squared values

for survival prediction range from .00 to .45. Linear regression and M5 model trees per-

formed best. Data sets with attribute selection generally produced results with comparable

r-squared values. Remaining machine learning algorithms were t-test inferior to linear re-

gression accuracy in most cases. Meta-learning introduced statistically superior performance

in multi-layer perceptrons when compared to linear regression performance.

Figure 237: Tumor Size - R-Squared Results

Figure 238: Tumor Size - R-Squared Results - AdaBoostM1
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Regression - Tumor Size
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Figure 239: Tumor Size - Regression Results Graph
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Regression - Tumor Size - Meta-
Learners
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Figure 240: Tumor Size - Regression Results Graph - Bagging and Stacking

Figure 241: Tumor Size - T-Test vs. Linear Regression
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Figure 242: Tumor Size - T-Test vs. Linear Regression - Meta-learners

184



5.12 R2 - ECOG 6-Month

For ECOG 6-Month regression tests among N=72 patients, we predict numeric values ranging

from 0 to 2 (ECOG values represented are those available among instances.). Distribute

of target values is shown in Table 12. Regression r-squared values for ECOG prediction

range from .00 to .27. Multi-layer perceptrons and RFB networks perform best, particularly

with meta-learning on set F. Data sets with attribute selection generally produced results

with higher r-squared values. Remaining machine learning algorithms were t-test inferior

to linear regression accuracy in most cases. Meta-learning introduced statistically superior

performance in multi-layer perceptrons, M5 model trees, and linear regression with bagging

when compared to standard linear regression performance. High-performance models based

on ECOG 6-Month regression are presented in Section 6.3.

Figure 243: ECOG 6-Month - R-Squared Results

Figure 244: ECOG 6-Month - R-Squared Results - AdaBoostM1
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Regression -  ECOG 6-Month
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Figure 245: ECOG 6-Month - Regression Results Graph
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Regression -  ECOG 6-Month - Meta-
Learners
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Figure 246: ECOG 6-Month - Regression Results Graph - Bagging and Stacking

Figure 247: ECOG 6-Month - T-Test vs. Linear Regression
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Figure 248: ECOG 6-Month - T-Test vs. Linear Regression - Meta-learners
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5.13 R3 - ECOG 9-Month

For ECOG 9-Month regression tests among N=57 patients, we predict numeric values rang-

ing from 0 to 3 (ECOG values represented are those available among instances.). Distribute

of target values is shown in Table 13. Regression r-squared values for ECOG prediction

range from .00 to .25. Multi-layer perceptrons and RFB networks perform best, particularly

on set E. Data sets with attribute selection generally produced results with higher r-squared

values. Remaining machine learning algorithms were t-test comparable or inferior to linear

regression accuracy in most cases. Meta-learning introduced statistically superior perfor-

mance in most tested models when compared to standard linear regression performance.

High-performance models based on ECOG 9-Month regression are presented in Section 6.4.

Figure 249: ECOG 9-Month - R-Squared Results

Figure 250: ECOG 9-Month - R-Squared Results - AdaBoostM1
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Regression -  ECOG 9-Month
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Figure 251: ECOG 9-Month - Regression Results Graph

190



Regression -  ECOG 9-Month - Meta-
Learners

0.00

0.10

0.20

0.30

0.40

0.50

0.60

LNR M5M.BG M5R.BG LNR.BG RBF.BG MLP2.BG MLP3.BG STK

Regression Method

R
-S

q
u

a
re

d

E

F

Figure 252: ECOG 9-Month - Regression Results Graph - Bagging and Stacking

Figure 253: ECOG 9-Month - T-Test vs. Linear Regression
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Figure 254: ECOG 9-Month - T-Test vs. Linear Regression - Meta-learners
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5.14 R4 - ECOG 12-Month

For ECOG 12-Month regression tests among N=44 patients, we predict numeric values rang-

ing from 0 to 3 (ECOG values represented are those available among instances.). Distribute

of target values is shown in Table 14. Regression r-squared values for ECOG prediction range

from .00 to .28. Data sets with attribute selection generally produced results with higher

r-squared values. Remaining machine learning algorithms were t-test comparable or inferior

to linear regression accuracy in most cases. Meta-learning introduced statistically superior

performance in multi-layer perceptrons on the data set E when compared to standard linear

regression performance.

Figure 255: ECOG 12-Month - R-Squared Results

Figure 256: ECOG 12-Month - R-Squared Results - AdaBoostM1
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Regression - ECOG 12-Month
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Figure 257: ECOG 12-Month - Regression Results Graph
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Regression - ECOG 12-Month - Meta-
Learners
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Figure 258: ECOG 12-Month - Regression Results Graph - Bagging and Stacking

Figure 259: ECOG 12-Month - T-Test vs. Linear Regression
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Figure 260: ECOG 12-Month - T-Test vs. Linear Regression - Meta-learners
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5.15 R5 - Survival

For survival regression tests among N=60 patients, we predict numeric values ranging from

0.9 to 29.3 months. Distributions of target values is shown in Table 15. Regression r-squared

values for survival prediction range from .00 to .28. Multi-layer perceptrons and linear re-

gression with bagging performed generally better than linear regression, particularly on set

E. Data sets with attribute selection generally produced results with higher r-squared values

for meta-learning tests. Remaining machine learning algorithms had varied t-test accura-

cies when compared to linear regression. Meta-learning introduced instances of statistically

inferior performance on both data sets.

Figure 261: Survival - R-Squared Results

Figure 262: Survival - R-Squared Results - AdaBoostM1
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Regression - Survival
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Figure 263: Survival - Regression Results Graph
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Regression -  Survival - Meta-Learners
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Figure 264: Survival - Regression Results Graph - Bagging and Stacking

Figure 265: Survival - T-Test vs. Linear Regression
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Figure 266: Survival - T-Test vs. Linear Regression - Meta-learners
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6 High-Performance Predictive Models

Several of the high-performance machine learning models are described in this section. Two

models from the classification experiments and two from the regression experiments are

demonstrated. Each of these models outperform traditional regression methods via statistical

tests. Each model also exhibits interesting structural characteristics, both in their internal

design and the feature-selected attribute sets used to generate them. Verbatim Weka output

of these models follows each section.

6.1 Classification - Histology - Data Set C - Bayesian Net 2-Parent

Shown here is a Bayesian Net 2-Parent classifier with high predictive accuracy for majority

target class values. This model is taken from the C5 experiments in Section 5.5. Histology

prediction is difficult given the wide variety of categorical possibilities (14 types are repre-

sented here). Additionally, certain histology types are only rarely represented in the clinical

setting (MEN-I, pseudopapillary tumors, renal mets). As accurate prediction across all types

is difficult, we seek instead to demonstrate models which can predict some of the more fre-

quently occurring histologic values, including adenocarcinomas, neuroendocrine tumors, and

IMPNs.

A graphical representation of this Bayes Net model is demonstrated in Figures 267

and 268. Classification accuracy for this particular Bayes Net model is 50.55%. For the three

most frequently occurring histologic types, ’Adenocarcinoma of Pancreas - NOS’, ’Ductal

Adenocarcinoma of Pancreas’, and ’IPMN - Benign or CiS’, the predictive accuracy of this

model is 79.03%. The Confusion matrix illustrated in Figure 269 illustrates the model’s

predictive accuracy for different histologic values, with the three majority histologic values

shown boxed.

Experimental iterations of this data set with other Bayesian methods show that the ac-

curacy can be pushed even higher. Naive Bayes classification retains the highest experiment
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accuracy at 56.07% (ref. Figure 183), although the Bayesian Net shown here exhibits a

much more interesting probability structure. Each node on the Bayesian Net reflects the

joint probability distribution for its related attribute as determined by the attribute values

of its parent nodes. These probability distributions are determined by the comparative fre-

quencies of attribute values within the data sets. Examples of these distributions are shown

in Figure 270.

Feature-selection generated a 24 attribute subset for data sets C and D in these experi-

ments. The field names and their explanations are listed in Table 24. Generally, experimental

accuracy was much higher for feature-selected data sets. As this entire subset consists of cat-

egorical attributes, supervised discretization induces no change to the result set. Therefore,

no experimental variation exists on models generated from data set C or D.
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Field Description
PresumptiveDx Presumptive Diagnosis
SxWtloss Presentation - Weight Loss
SxJaun Presentation - Jaundice
SxNau Presentation - Nausea
SxFati Presentation - Fatigue
SxPru Presentation - Pruritis
SxOT Presentation - Other
CxDiab Comorbidities - Diabetes
CTNodeOmit CT - Nodal Omission
EUSVascOmit EUS - Vascular Omission
EUSPortal EUS - Portal Vein Involvement
EUSNoNode EUS - No Nodal Involvement
EUSStagingT EUS - T Staging
EUSCyto EUS - Cytology
TxLap Treatment - Laparoscopy
TxRadia Treatment - Radiotherapy
TxChemo Treatment - Chemotherapy
TxChemoGem Treatment - Chemotherapy - Gemcitabine
ResPxType Resection - Procedure Type
ResTransfusion Resection - Transfusion
ResPOCourse Resection - Postoperative Course
ResPathN Resection - Pathology N-Stage
SurOncName Surgical Oncologist
RadOncName Radiation Oncologist

Table 24: Histology Feature-Selected Attribute Subset
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Figure 267: Classification - Histology - Data Set C - Bayesian Net 2-Parent

204



Figure 268: Classification - Histology - Data Set C - Bayesian Net 2-Parent (continued)
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Figure 269: Classification - Histology - Data Set C - Confusion Matrix
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Figure 270: Classification - Histology - Data Set C - Joint Probability Distribution Examples
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Weka Output:

=== Run information ===

Scheme: weka.classifiers.bayes.BayesNet -D -Q weka.classifiers.bayes.

net.search.local.K2 -- -P 2 -E weka.classifiers.bayes.net.

estimate.SimpleEstimator -- -A 0.5

Relation: Book1-weka.filters.supervised.attribute.AttributeSelection-

Eweka.attributeSelection.CfsSubsetEval-Sweka

.attributeSelection.BestFirst -D 1 -N 5

Instances: 91

Attributes: 25

PresumptiveDx

SxWtloss

SxJaun

SxNau

SxFati

SxPru

SxOT

CxDiab

CTNodeOmit

EUSVascOmit

EUSPortal

EUSNoNode

EUSStagingT

EUSCyto

TxLap

TxRadia
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TxChemo

TxChemoGem

ResPxType

ResTransfusion

ResPOCourse

ResPathN

SurOncName

RadOncName

Histology

Test mode: 10-fold cross-validation

=== Classifier model (full training set) ===

Bayes Network Classifier

not using ADTree

#attributes=25 #classindex=24

Network structure (nodes followed by parents)

PresumptiveDx(6): Histology

SxWtloss(2): Histology

SxJaun(2): Histology

SxNau(2): Histology

SxFati(2): Histology

SxPru(2): Histology SxJaun

SxOT(2): Histology

CxDiab(2): Histology SxNau

CTNodeOmit(2): Histology SxPru

EUSVascOmit(2): Histology SxOT

209



EUSPortal(2): Histology

EUSNoNode(2): Histology PresumptiveDx

EUSStagingT(5): Histology EUSPortal

EUSCyto(7): Histology

TxLap(2): Histology SxJaun

TxRadia(2): Histology EUSStagingT

TxChemo(2): Histology TxRadia

TxChemoGem(2): Histology TxChemo

ResPxType(7): Histology

ResTransfusion(2): Histology CxDiab

ResPOCourse(2): Histology CTNodeOmit

ResPathN(3): Histology

SurOncName(3): Histology EUSCyto

RadOncName(6): Histology

Histology(14):

LogScore Bayes: -1735.470575102397

LogScore BDeu: -232.372454610241

LogScore MDL: -5005.723116036344

LogScore ENTROPY: -2418.745189048893

LogScore AIC: -3565.745189048918

Time taken to build model: 0.08 seconds

=== Stratified cross-validation ===

=== Summary ===
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Correctly Classified Instances 46 50.5495 %

Incorrectly Classified Instances 45 49.4505 %

Kappa statistic 0.3721

Mean absolute error 0.0767

Root mean squared error 0.2312

Relative absolute error 64.7016 %

Root relative squared error 95.6473 %

Total Number of Instances 91

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure Class

0.5 0.194 0.48 0.5 0.49

Adenocarcinoma_of_Pancreas/NOS

0.444 0.037 0.571 0.444 0.5

Ampullary_Adenocarcinoma

0.667 0.234 0.545 0.667 0.6

Ductal_Adeno_of_Pancreas

0.4 0.047 0.333 0.4 0.364

Neuroendocrine_(Islet_Cell)

0 0 0 0 0

Von_Hippel-Lindau_Syndrome

0 0.011 0 0 0

Duodenal_Adenocarcinoma

0 0 0 0 0

Distal_Cholangiocarcinoma

0 0.011 0 0 0
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Renal_Mets

0.25 0.034 0.25 0.25 0.25

Cystadenoma

0 0 0 0 0

MEN-I

0 0 0 0 0

Pseudopapillary_Tumor

0.818 0.063 0.643 0.818 0.72

IPMN/IPMT_-_Benign_or_CiS

0 0 0 0 0

Mucinous_Cystic_Neoplasm

0 0 0 0 0

Benign_Cyst

=== Confusion Matrix ===

a b c d e f g h i j k l m n <-- classified as

12 2 9 1 0 0 0 0 0 0 0 0 0 0 | a = Adenocarcinoma_of_Pan

4 4 1 0 0 0 0 0 0 0 0 0 0 0 | b = Ampullary_Adenocarcinoma

8 0 18 0 0 0 0 0 0 0 0 1 0 0 | c = Ductal_Adeno_of_Pancreas

1 0 1 2 0 0 0 1 0 0 0 0 0 0 | d = Neuroendocrine_(Islet)

0 0 0 1 0 0 0 0 0 0 0 0 0 0 | e = Von_Hippel-Lindau_Syn

0 1 1 0 0 0 0 0 0 0 0 0 0 0 | f = Duodenal_Adenocarcinoma

0 0 0 0 0 1 0 0 0 0 0 0 0 0 | g = Distal_Cholangiocarcinoma

0 0 0 1 0 0 0 0 1 0 0 1 0 0 | h = Renal_Mets

0 0 1 0 0 0 0 0 1 0 0 2 0 0 | i = Cystadenoma

0 0 0 0 0 0 0 0 0 0 0 1 0 0 | j = MEN-I
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0 0 0 0 0 0 0 0 1 0 0 0 0 0 | k = Pseudopapillary_Tumor

0 0 1 1 0 0 0 0 0 0 0 9 0 0 | l = IPMN/IPMT_-_Benign_or_CiS

0 0 1 0 0 0 0 0 0 0 0 0 0 0 | m = Mucinous_Cystic_Neoplasm

0 0 0 0 0 0 0 0 1 0 0 0 0 0 | n = Benign_Cyst
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6.2 Classification - Survival - Data Set C - Bayesian Net 2-Parent

Here we have a highly accurate Bayesian Net 2-Parent classifier for survival. This model

is taken from the C10 experiments in Section 5.10. Survival prediction is one of the most

important topics in oncology research, and is subject of many other research papers (ref. Sec-

tion 7). As many of these papers use traditional regression methods for survival prediction,

it is particularly important here to demonstrate higher performance of novel methods.

A graphical representation of this Bayes Net model is illustrated in Figures 271 and 272.

Overall accuracy for this model is rated 60.00%, as compared to average logistic regression

performance 42.50% (ref. Figure 228). The accuracy of 60.00% for this single generation of

the model exceeds the average iterated performance of the models in C10, which means it

outperforms logistic regression via t-testing. There is fairly even coverage across predictions

of different survival categories, as shown via the Confusion Matrix in Figure 273.

An interesting feature of this model is the 19 attribute subset chosen via feature-selection.

The attributes chosen by feature-selection here contain many elements (diabetes, smok-

ing history, prior chemotherapy treatments, need for palliative measures, etc.) which are

known to be highly important in traditional medical assessment of pancreatic cancer sur-

vival rates [VD93]. The descriptions of these attribute fields are shown in Table 25. This

selection of biologically-correlated attributes makes a strong argument for the medical ap-

plicability of this model.
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Field Description
PresumptiveDx Presumptive Diagnosis
SxSatiety Presentation - Early Satiety
SxOT Presentation - Other
CxDiabDiet Comorbidities - Diabetes Diet Controlled
CxPriorCancerChemo Comorbidities - Prior Chemo Treatment
SHCigarette Social History - Cigarettes
PTCDx PTC Diagnosis
EUSDx EUS Diagnosis
EUSSMV EUS - SMV Involvement
EUSNoNode EUS - No Nodal Involvement
Histology Histology
PreOutlook Preliminary Outlook
TxChemoIri Treatment - Chemotherapy - Irinotecan
TxChemoTax Treatment - Chemotherapy - Taxol
TxPal Treatment - Palliation
TxPalStens Treatment - Palliation - Stenting
ResPOPulmComp Resection - Postoperative Course - Pulmonary Complications
NoResNoHandle No Resection - Patient Can’t Handle
SurOncName Surgical Oncologist

Table 25: Survival Feature-Selected Attribute Subset
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Figure 271: Classification - Survival - Data Set C - Bayesian Net 2-Parent
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Figure 272: Classification - Survival - Data Set C - Bayesian Net 2-Parent (continued)
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Figure 273: Classification - Survival - Data Set C - Confusion Matrix
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Weka Output:

=== Run information ===

Scheme: weka.classifiers.bayes.BayesNet -D -Q weka.classifiers

.bayes.net.search.local.K2 -- -P 2 -E weka.classifiers

.bayes.net.estimate.SimpleEstimator -- -A 0.5

Relation: Book1-weka.filters.unsupervised.attribute.Discretize-

F-B3-M-1.0-R191-weka.filters.unsupervised.attribute.

Remove-R184-weka.filters.supervised.attribute.

AttributeSelection-Eweka.attributeSelection

.CfsSubsetEval-Sweka.attributeSelection.BestFirst -D 1 -N 5

Instances: 60

Attributes: 20

PresumptiveDx

SxSatiety

SxOT

CxDiabDiet

CxPriorCancerChemo

SHCigarette

PTCDx

EUSDx

EUSSMV

EUSNoNode

Histology

PreOutlook

TxChemoIri

TxChemoTax
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TxPal

TxPalStens

ResPOPulmComp

NoResNoHandle

SurOncName

Longev

Test mode: 10-fold cross-validation

=== Classifier model (full training set) ===

Bayes Network Classifier

not using ADTree

#attributes=20 #classindex=19

Network structure (nodes followed by parents)

PresumptiveDx(6): Longev

SxSatiety(2): Longev

SxOT(2): Longev

CxDiabDiet(2): Longev

CxPriorCancerChemo(2): Longev

SHCigarette(2): Longev SxSatiety

PTCDx(2): Longev

EUSDx(2): Longev

EUSSMV(2): Longev

EUSNoNode(2): Longev PTCDx

Histology(11): Longev PresumptiveDx

PreOutlook(3): Longev EUSSMV

TxChemoIri(2): Longev EUSDx
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TxChemoTax(2): Longev

TxPal(2): Longev PreOutlook

TxPalStens(2): Longev TxPal

ResPOPulmComp(2): Longev PTCDx

NoResNoHandle(2): Longev TxPal

SurOncName(3): Longev CxDiabDiet

Longev(3):

LogScore Bayes: -648.3033238760419

LogScore BDeu: -199.86101028520844

LogScore MDL: -1466.702725061748

LogScore ENTROPY: -873.0227635395436

LogScore AIC: -1163.0227635395436

Time taken to build model: 0 seconds

=== Stratified cross-validation ===

=== Summary ===

Correctly Classified Instances 36 60 %

Incorrectly Classified Instances 24 40 %

Kappa statistic 0.4

Mean absolute error 0.3055

Root mean squared error 0.4237

Relative absolute error 68.7481 %

Root relative squared error 89.8773 %

Total Number of Instances 60
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=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure Class

0.7 0.2 0.636 0.7 0.667 ’(-inf-5.753425]’

0.55 0.2 0.579 0.55 0.564 ’(5.753425-11.769863]’

0.55 0.2 0.579 0.55 0.564 ’(11.769863-inf)’

=== Confusion Matrix ===

a b c <-- classified as

14 3 3 | a = ’(-inf-5.753425]’

4 11 5 | b = ’(5.753425-11.769863]’

4 5 11 | c = ’(11.769863-inf)’
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6.3 Regression - ECOG 6-Month - Data Set F - Linear Regression

w/ Bagging

Here we have a highly accurate Linear Regression w/ Bagging regressor for 6-Month ECOG

scores. This model is taken from the R2 experiments in Section 5.12. This is one of the

first experiments where meta-learning affects a statistical improvement to a model. The

r-squared value for this model is 0.32, as opposed to 0.26 for standard linear regression, a

statistically significant improvement via t-testing. This is also one of the first experiments

where machine learning successfully amplifies a traditional predictive regression.

Figure 274 illustrates the Bagging ’committee’ which constitutes this model. Each com-

mittee member is trained on an N/10 resample of the data set. Training on the resample

produces a unique linear regression equation for each member. Each equation uses different

coefficients and combinations of attributes from the feature-selected data set. When evaluat-

ing a new instance, each member in the committee evaluates and ’votes’ on a possible value

for 6-Month ECOG. The votes are weighted equally by the model, and an aggregate ECOG

prediction is produced. Refer to Section 4.3.5 or [Bre96] for further details on Bagging.

As with most experiments, feature-selected data sets in 6-Month ECOG generally pro-

duced more accurate results. Feature-selection generated a 17 attribute subset for data sets F

in these experiments. The field names and their explanations are listed in Table 26. Interest-

ing, the majority of these fields involve of chemo regimen and details pertaining to whether

a patient underwent resection. These are interesting results, considering that many of these

treatment decisions are made directly regarding a patient’s potential wellbeing performance.
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Field Description
SxChola Presentation - Cholangitis
SxBC Presentation - Biliary Colic
CxDiab Comorbidities - Diabetes
CxPriorCancerChemo Comorbidities - Prior Chemo Treatment
EUSDx EUS Diagnosis
EUSSMVClass EUS - SMV Involvement Class
EUSCeliacNode EUS - Celiac Nodal Involvement
ERCPStentType ERCP Stent Type
TxChemoAva Treatment - Chemotherapy - Avastin
TxChemoCap Treatment - Chemotherapy - Capecitabine
TxChemoTax Treatment - Chemotherapy - Taxol
ResOrgans Resection - Additional Organs
ResPOAbdominal Resection - Postoperative Course - Abdominal Collection
ResPOPulmComp Resection - Postoperative Course - Pulmonary Complications
NoResNoHandle No Resection - Patient Can’t Handle
NoResRefused No Resection - Patient Refused Treatment
NoResPVInvolve No Resection - Portal Vein Involvement

Table 26: ECOG 6-Month Feature-Selected Attribute Subset
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?
ECOG

(Bagging Committee 

Votes Weighted Equally)

0.7708 * CxDiab=TRUE + 

0.7257 * EUSDx=FALSE + 

1.4554 * EUSSMVClass=Encased + 

1.0454 * ResPOPulmComp=FALSE + 

-0.7265 * NoResNoHandle=TRUE + 

0.9548 * NoResRefused=TRUE + 

1.6817 * NoResPVInvolve=TRUE +  

-1.4986

0.8263 * CxDiab=TRUE + 

0.8083 * EUSDx=FALSE + 

1.7504 * EUSCeliacNode=TRUE + 

0.8035 * ERCPStentType=Metal + 

0.6628 * ResPOPulmComp=FALSE + 

0.6595 * NoResPVInvolve=TRUE + 

-0.5322 

0.6748 * CxDiab=TRUE + 

0.7406 * EUSDx=FALSE + 

0.4859 * ResPOPulmComp=FALSE + 

0.8273 * NoResPVInvolve=TRUE + 

-0.0964 

0.6175 * CxDiab=TRUE + 

0.6021 * EUSDx=FALSE + 

1.3825 * EUSSMVClass=Encased + 

1.556  * EUSCeliacNode=TRUE + 

0.5224 * ResOrgans=spleen + 

0.7066 * ResPOPulmComp=FALSE + 

1.0307 * NoResRefused=TRUE + 

-1.2459 

0.9979 * SxChola=TRUE + 

0.683  * CxDiab=TRUE + 

0.7269 * EUSDx=FALSE + 

1.4165 * EUSSMVClass=Encased + 

0.6263 * NoResRefused=TRUE + 

0.5182 * NoResPVInvolve=TRUE + 

-0.1991 

0.6933 * CxDiab=TRUE + 

0.6812 * EUSDx=FALSE + 

1.6045 * EUSCeliacNode=TRUE + 

0.7885 * NoResPVInvolve=TRUE + 

0.3955 

0.7232 * CxDiab=TRUE + 

0.7302 * EUSDx=FALSE + 

1.5916 * EUSCeliacNode=TRUE + 

0.8539 * ERCPStentType=Metal + 

0.5216 * ResOrgans=spleen + 

0.6263 * ResPOPulmComp=FALSE + 

0.9463 * NoResPVInvolve=TRUE + 

-0.8171

0.8249 * SxChola=TRUE + 

0.7269 * CxDiab=TRUE + 

0.6689 * EUSDx=FALSE + 

1.3587 * EUSSMVClass=Encased + 

1.7183 * EUSCeliacNode=TRUE + 

0.6451 * ResPOPulmComp=FALSE + 

0.471  * NoResRefused=TRUE + 

0.6194 * NoResPVInvolve=TRUE + 

-0.8164

1.2688 * SxChola=TRUE + 

0.6268 * CxDiab=TRUE + 

0.514  * EUSDx=FALSE + 

1.3384 * EUSSMVClass=Encased +

1.561  * EUSCeliacNode=TRUE + 

0.4906 * NoResRefused=TRUE + 

0.1044

1.0084 * CxDiab=TRUE + 

0.6853 * EUSDx=FALSE + 

0.9238 * EUSSMVClass=Encased + 

1.6886 * EUSCeliacNode=TRUE + 

0.5635 * ResPOPulmComp=FALSE + 

0.7205 * NoResPVInvolve=TRUE + 

-0.4369

N/10 Resample

N/10 Resample

N/10 Resample

N/10 Resample

N/10 Resample

N/10 Resample

N/10 Resample

N/10 Resample

N/10 Resample
N/10 Resample
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Weka Output:

=== Run information ===

Scheme: weka.classifiers.meta.Bagging -P 100 -S 1 -I 10 -W

weka.classifiers

.functions.LinearRegression -- -S 0 -R 1.0E-8

Relation: Book1-weka.filters.supervised.attribute.AttributeSelection

-Eweka.attributeSelection.CfsSubsetEval-Sweka.attribute

Selection.BestFirst -D 1 -N 5

Instances: 72

Attributes: 18

SxChola

SxBC

CxDiab

CxPriorCancerChemo

EUSDx

EUSSMVClass

EUSCeliacNode

ERCPStentType

TxChemoAVA

TxChemoCap

TxChemoTax

ResOrgans

ResPOAbdominal

ResPOPulmComp

NoResNoHandle

NoResRefused
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NoResPVInvolve

ECOG

Test mode: 10-fold cross-validation

=== Classifier model (full training set) ===

All the base classifiers:

Linear Regression Model

ECOG =

1.0084 * CxDiab=TRUE +

0.6853 * EUSDx=FALSE +

0.9238 * EUSSMVClass=Encased +

1.6886 * EUSCeliacNode=TRUE +

0.5635 * ResPOPulmComp=FALSE +

0.7205 * NoResPVInvolve=TRUE +

-0.4369

Linear Regression Model

ECOG =

0.8263 * CxDiab=TRUE +

227



0.8083 * EUSDx=FALSE +

1.7504 * EUSCeliacNode=TRUE +

0.8035 * ERCPStentType=Metal +

0.6628 * ResPOPulmComp=FALSE +

0.6595 * NoResPVInvolve=TRUE +

-0.5322

Linear Regression Model

ECOG =

0.7708 * CxDiab=TRUE +

0.7257 * EUSDx=FALSE +

1.4554 * EUSSMVClass=Encased +

1.0454 * ResPOPulmComp=FALSE +

-0.7265 * NoResNoHandle=TRUE +

0.9548 * NoResRefused=TRUE +

1.6817 * NoResPVInvolve=TRUE +

-1.4986

Linear Regression Model

ECOG =

0.6748 * CxDiab=TRUE +
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0.7406 * EUSDx=FALSE +

0.4859 * ResPOPulmComp=FALSE +

0.8273 * NoResPVInvolve=TRUE +

-0.0964

Linear Regression Model

ECOG =

1.2688 * SxChola=TRUE +

0.6268 * CxDiab=TRUE +

0.514 * EUSDx=FALSE +

1.3384 * EUSSMVClass=Encased +

1.561 * EUSCeliacNode=TRUE +

0.4906 * NoResRefused=TRUE +

0.1044

Linear Regression Model

ECOG =

0.6175 * CxDiab=TRUE +

0.6021 * EUSDx=FALSE +

1.3825 * EUSSMVClass=Encased +

1.556 * EUSCeliacNode=TRUE +
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0.5224 * ResOrgans=spleen +

0.7066 * ResPOPulmComp=FALSE +

1.0307 * NoResRefused=TRUE +

-1.2459

Linear Regression Model

ECOG =

0.8249 * SxChola=TRUE +

0.7269 * CxDiab=TRUE +

0.6689 * EUSDx=FALSE +

1.3587 * EUSSMVClass=Encased +

1.7183 * EUSCeliacNode=TRUE +

0.6451 * ResPOPulmComp=FALSE +

0.471 * NoResRefused=TRUE +

0.6194 * NoResPVInvolve=TRUE +

-0.8164

Linear Regression Model

ECOG =

0.9979 * SxChola=TRUE +

0.683 * CxDiab=TRUE +
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0.7269 * EUSDx=FALSE +

1.4165 * EUSSMVClass=Encased +

0.6263 * NoResRefused=TRUE +

0.5182 * NoResPVInvolve=TRUE +

-0.1991

Linear Regression Model

ECOG =

0.6933 * CxDiab=TRUE +

0.6812 * EUSDx=FALSE +

1.6045 * EUSCeliacNode=TRUE +

0.7885 * NoResPVInvolve=TRUE +

0.3955

Linear Regression Model

ECOG =

0.7232 * CxDiab=TRUE +

0.7302 * EUSDx=FALSE +

1.5916 * EUSCeliacNode=TRUE +

0.8539 * ERCPStentType=Metal +

0.5216 * ResOrgans=spleen +
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0.6263 * ResPOPulmComp=FALSE +

0.9463 * NoResPVInvolve=TRUE +

-0.8171

Time taken to build model: 0.11 seconds

=== Cross-validation ===

=== Summary ===

Correlation coefficient 0.5706

Mean absolute error 0.4522

Root mean squared error 0.5616

Relative absolute error 72.7155 %

Root relative squared error 81.3339 %

Total Number of Instances 72
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6.4 Regression - ECOG 9-Month - Data Set F - Multi-layer Per-

ceptron w/ 2 Hidden Layers

Here we have a highly accurate Multi-layer Perceptron regressor for 9-Month ECOG scores.

This model is taken from the R3 experiments in Section 5.13. The r-squared value for this

model is 0.16, as opposed to 0.04 for standard linear regression, a statistically significant

improvement via t-testing. Multi-layer perceptrons exhibited high r-squared values for many

of the regression experiments. They are generally known in medical data mining for high

accuracy, but it is difficult to discern from their internal structure how their decisions are

produced [KK95].

Figure 275 shows the network layout of this particular regressor. Weights are conditioned

via backpropagation on the training sets. Two hidden layers are used, with a learning weight

of 0.3 and momentum of 0.2. For new instances, input nodes pass attribute values through

the two trained hidden layers, which are aggregated down to produce a ECOG 9-Month

prediction. Following the MLP figure is Weka output showing the trained weights on each

network connection.

Feature-selected data sets in 9-Month ECOG generally produced more accurate results.

Feature-selection generated a 19 attribute subset for data sets F in these experiments. The

field names and their explanations are listed in Table 27. As with 6-Month ECOG, the

majority of these fields involve chemo regimen and details pertaining the patient’s resection.

It may be interesting future work to examine whether there is research precedence that these

factors significantly affect wellbeing performance.
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Field Description
SxChola Presentation - Cholangitis
SxBack Presentation - Back Pain
SxDyspha Presentation - Dysphasia
CxDiabDiet Comorbidities - Diabetes Diet Control
CxHyper Comorbidities - Hypertension
CxPriorCancerChemo Comorbidities - Prior Chemo Treatment
CXRDx Chest X-Ray Diagnosis
EUSSMVClass EUS - SMV Involvement Class
EUSPortal EUS - Portal Vein Involvement
EUSPortalClass EUS - Portal Vein Involvement Class
TxChemoAva Treatment - Chemotherapy - Avastin
TxChemoIri Treatment - Chemotherapy - Irinotecan
TxChemoLeu Treatment - Chemotherapy - Leukovorin
TxChemoTax Treatment - Chemotherapy - Taxol
ResTFFP Resection - Transfusion - Fresh Frozen Plasma
ResPOLeak Resection - Postoperative Course - Leak
ResPOAbdominal Resection - Postoperative Course - Abdominal Collection
ResPOPulmComp Resection - Postoperative Course - Pulmonary Complications
ResPathR Resection - Pathology R-Stage

Table 27: ECOG 9-Month Feature-Selected Attribute Subset
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Figure 275: Regression - ECOG 9-Month - Data Set F - Multi-layer Perceptron w/ 2 Hidden
Layers
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Weka Output:

=== Run information ===

Scheme: weka.classifiers.functions.MultilayerPerceptron -L 0.3 -M 0.2

-N 500 -V 0 -S 0 -E 20 -H 2

Relation: Book1-weka.filters.supervised.attribute.AttributeSelection-

Eweka.attributeSelection.CfsSubsetEval-Sweka.

attributeSelection.BestFirst -D 1 -N 5

Instances: 72

Attributes: 18

SxChola

SxBC

CxDiab

CxPriorCancerChemo

EUSDx

EUSSMVClass

EUSCeliacNode

ERCPStentType

TxChemoAVA

TxChemoCap

TxChemoTax

ResOrgans

ResPOAbdominal

ResPOPulmComp

NoResNoHandle

NoResRefused

NoResPVInvolve
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ECOG

Test mode: 10-fold cross-validation

=== Classifier model (full training set) ===

Linear Node 0

Inputs Weights

Threshold -0.27907681180500077

Node 1 -0.6689299459785472

Node 2 2.0634974138324895

Sigmoid Node 1

Inputs Weights

Threshold 0.2161565560886697

Attrib SxChola -0.8240512834848186

Attrib SxBC 0.9719889319602957

Attrib CxDiab 2.4018587825692728

Attrib CxPriorCancerChemo 1.5612434307033178

Attrib EUSDx -1.7402535693664936

Attrib EUSSMVClass -2.380758092011916

Attrib EUSCeliacNode -2.2846632584637074

Attrib ERCPStentType 0.27077130269695104

Attrib TxChemoAVA 1.6004461214131707

Attrib TxChemoCap 1.0846704053365328

Attrib TxChemoTax 1.3085182989378599

Attrib ResOrgans=spleen -3.775846082844799

Attrib ResOrgans=duodenum_preserving -2.308761590318322

Attrib ResOrgans=pylorus-sparing -1.0989356680294642
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Attrib ResPOAbdominal 1.7485222222375152

Attrib ResPOPulmComp 4.995927948745733

Attrib NoResNoHandle -0.8438995490964636

Attrib NoResRefused -1.1648150708131346

Attrib NoResPVInvolve -1.9970562590263103

Sigmoid Node 2

Inputs Weights

Threshold 0.01931248644125251

Attrib SxChola 1.3618203056809814

Attrib SxBC -9.480039587078225E-4

Attrib CxDiab -2.3505528703455143

Attrib CxPriorCancerChemo -0.8645973811683567

Attrib EUSDx 2.3745261715454515

Attrib EUSSMVClass 3.5097969956607966

Attrib EUSCeliacNode 2.617837343077885

Attrib ERCPStentType 0.8113622216035797

Attrib TxChemoAVA -0.5206862062795482

Attrib TxChemoCap 0.12298147304095629

Attrib TxChemoTax -0.40371463564664195

Attrib ResOrgans=spleen 0.8047396124851516

Attrib ResOrgans=duodenum_preserving -0.27889286068420516

Attrib ResOrgans=pylorus-sparing -0.20715130545850244

Attrib ResPOAbdominal -0.16035164493704002

Attrib ResPOPulmComp -2.2285130411821803

Attrib NoResNoHandle -0.29341318666906574

Attrib NoResRefused 0.5048077573826775

Attrib NoResPVInvolve 2.006560027984653
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Class

Input

Node 0

Time taken to build model: 0.27 seconds

=== Cross-validation ===

=== Summary ===

Correlation coefficient 0.4798

Mean absolute error 0.5168

Root mean squared error 0.655

Relative absolute error 83.1096 %

Root relative squared error 94.8561 %

Total Number of Instances 72
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7 Related Work

A significant amount of work in medical diagnosis using machine learning has come from

the University of Ljubljana, Slovenia, under Prof. Igor Kononenko. [KK95] provides an

excellent overview of the medical applicability of machine learning techniques, and presents

the advantages and disadvantages of different algorithmic approaches. [Kon93] covers similar

ground and presents inductive and Bayesian learning technical for medical analysis in more

detail. The techniques discussed in his works have been applied in many medical fields,

including pathology, urology, cardiology, and neuropsychology. Work done in [KBK+97]

applies specifically to oncology, using machine learning to predict the survival time of patients

with thyroid carcinoma. The algorithmic focus of this work deals primarily with regression,

Assistant decision trees, and Bayesian techniques. We present a broader variety of predictive

algorithms in our oncological analysis, and examine different ways to improve algorithmic

accuracy, including feature selection and meta-learning.

Machine learning techniques, particularly regression methods, are used commonly in

medical literature. [FS03] uses multivariate logistic regression and Cox’s proportional hazard

model to show that liver metastatis and peritoneal implants are major predictive factors in

pancreatic cancer survival. [SR02] contends, using Kaplan-Meier survival analysis, that

tumor grading, angioinvasion and perineural invasion are not sufficient pancreatic cancer

survival factors. Dr. Murray Brennan makes prolific use of machine learning techniques in his

research, and presents in [Bre04] a predictive nomogram for pancreatic cancer survival. Dr.

Jennifer Tseng in [Tse04] uses multivariate regression to study survival rates of pancreatic

cancer who undergo superior mesenteric or portal vein resections. Our research differs in our

broader variety of predictive techniques, and that we look additionally at patient wellbeing

and tumor pathology characteristics.
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8 Conclusions and Future Work

This thesis set out with two goals–to develop detailed clinical databases of cancer patients,

and to conduct machine learning studies on the patient data. With the help of medical pro-

fessionals at UMass Memorial Hospital, we were able to successfully build clinical databases

of seven different cancer forms which can represent the broad narrative of patient treatment.

This database was tested by accumulating about a hundred detailed pancreatic cancer pa-

tient records. Using this data, we tested a variety of novel machine learning techniques

to form predictive models for clinical patient outlook. The accuracy of these novel tech-

niques were statistically tested against linear and logistic regression, the standard medical

prediction methods.

We found that most novel machine learning techniques that we tested were able to de-

liver comparable performance. Both classification and regression algorithms were considered.

Generally, Multi-Layer Perceptrons, Bayesian methods, and Locally Weighted Learning with

Naive Bayes performed best. In most cases, the novel models performed as well as tradi-

tional regression; in some instances they performed even better. Novel regression techniques

delivered better performance more frequently than classification techniques. Models based

on data sets which used feature selection and supervised discretization generally delivered

higher accuracy. In most cases, meta-learning did not improve the accuracy of predictive

models. This is a somewhat surprising result, since meta-learning is designed to overcome

data mining limitations of smaller data sets.

Future work will expand upon the research basis presented here, and should consider

some of the limitations we encountered. First and foremost is attaining a larger patient

data set–whether through accumulating additional UMass patients, or expanding the study

to include additional institutions or research databases like the HCUP National Inpatient

Sample. Continuing to add detail and functionality to the clinical databases will allow for

more thorough studies. New knowledge may be gained in testing a populated database

module for other gastrointestinal cancers or breast cancer. Studies may be conducted on
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the individual modules, and clinical performance may even be tested across different disease

forms.

There are a broad variety of machine learning predictive algorithms which we did not

cover, as well as potential parameter variation for those algorithms we used. There is also

algorithm evaluation to consider. In most cases, our novel classifiers had much higher ac-

curacy than logistic regression. However, very often the classifiers performed only as well

as a ZeroR guess. The way that single target class values dominate these medical data sets

lends itself to predictions for most common class type. This shows simple measurements of

accuracy may not always be the best metric of predictive model quality. Other means of

evaluation may be necessary and should be explored. Furthermore, the algorithms covered

here were based on target class prediction; machine learning to mine association rules and

instance clustering has not yet been considered.

The next step in this research should be to continue adding pancreatic patients to the

clinical database and generating new predictive models. An informal goal set by Dr. Whalen

was to eventually attain classification accuracies of 70% and r-squared values of .50, which

makes it clear that more data and further model refinements are still needed. It is important

to see whether our experimental results hold up or improve across a broader study pop-

ulation. From the clinical database side, the remaining modules will need further testing

and developing. Accumulating clinical data is a critical part of illuminating the design of

these modules; much of the functionality of the pancreatic module was decided upon as

patient data was being entered and research needs became clearer. Further experiments

with neural network based algorithms (MLP, RFB) should be explored in both classification

and regression settings, given their initial accuracy and the broad variety of possible algo-

rithm parameters. In experiments where majority classes dominate (t-stage, malignancy,

etc.), over-sampling techniques should be explored to emphasize the importance of correctly

representing minority classes. Finally, for the more promising predictive models that we’ve

presented here, their performance should be verified against broader pancreatic cancer pa-
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tient sets, or distinct patient sets from other institutions. This will allow us to conclude the

potential of these models for future medical research publication.
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Glossary

Adenocarcinoma: carcinoma which develops within glandular epithelium which typically

behaves in a very malignant fashion, 5

Adjuvant: therapy applied post-surgery, 12

Ampulla of Vater: dilation in the duodenal wall through which the common bile duct and

pancreatic duct empty into the small intestine, 7

Anastomosis: surgically connecting anatomically separate organs to form a continual chan-

nel, 3

Benign: cell growth characterized as not spreading to surrounding tissue, 3

Biopsy: a small sample of tumor tissue taken to evaluate its histologic composition and

malignancy, 6

Cancer: Diseases resulting from uncontrolled cell growth in regions known as neoplasms or

tumors, 3

Carcinogen: Chemical or physical agents which trigger cancer-causing DNA mutations, 3

Carcinoma: cancers arising from epithelial tissue, 3

Celiac axis: artery which originates in the abdominal aorta below the diaphragm, 10

Chemotherapy: systemic or localized application of antineoplastic drugs to destroy or retard

the development of tumor growth, 3

Computed axial tomography (CT or CAT): a three-dimensional internal view of a patient

using a series of sectional x-rays across a common axis, 6

Cyst: closed cavities of glandular epithelium where retained secretions are accumulated,

and may behave in a benign or malignant fashion, 5
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Cytology: study of cells at a microscopic level, 5

Distal common bile duct: portion of the excretory passage closest to the duodenum which

carries bile from the liver, 7

Duodenum: upper part of the small intestine, which extends from the lower end of the

stomach, 7

ECOG: Eastern Cooperative Oncology Group (ECOG) score for wellbeing, ranges 0-5,

consult Table 2, 4

Endoscopic ultrasound (EUS): ultrasound study generated by a thin, flexible camera passed

through the gastrointestinal tract, 6

Epithelial: related to the epithelium, a membrane of tissue which lines most internal and

external surfaces of the body and organs, 3

Fine needle aspiration (FNA): a biopsy procedure where a sample of cells is obtained ap-

plying suction through a fine needle, 10

G-Stage: refers to grade or differentiation between tumor cells and surrounding normal

cells, ranges from 1 to 4, 5

Gene counseling: series of DNA tests which establish susceptibility of a patient or their

family to certain forms of cancer, 3

Hepatic artery: artery which originates in the celiac artery and supplies the liver with

blood, 10

Histology: the microscopic structure of tumor tissue, 5

Immunotherapy: for tumors, experimental protocol which uses vaccination to trigger an

immune system response which destroys cancerous cells, 3
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In situ: tissue growth confined to the site of origin, 5

Inferior vena cava: vein formed by the union of two iliac veins that transports blood from

the lower limbs and pelvic region, 10

Intraductal papillary mucinous neoplasms: cystic pancreatic tumors which can progress to

cancers (called IPMNs or IPMT’s), 7

Invasion: malignant cell growth into local tissue, 3

Islet cell tumors: see neuroendocrine tumors, 7

Jejunum: middle part of the small intestine, starts at the end of the duodenum, 7

L-Stage: refers to tumor invasion into lymphatic vessels, 0 if absent and 1 if present, 5

Lymph Nodes: small bodies along lymphatic vessels which filter bacteria and foreign bodies,

presence of tumorous tissue within regional lymph nodes is an important prognostic

factor for cancer, 5

M-Stage: refers to metastatis to distant organs and is denoted 0 if absent and 1 if present,

5

Magnetic resonance imaging (MRI): use of magnetic resonance of photons to create a high-

contrast density image, 6

Malignant: cell growth characterized as spreading to surrounding or distant tissue, 3

Metastasis: malignant cell growth to distant sites in the body, 3

N-Stage: refers to regional lymph node involvement, ranges from 0 to 3, 5

Neoadjuvant: therapy applied pre-surgery, 12

Neoplasm: a distinct mass in a tissue or organ, 3
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Neuroendocrine tumors: tumors which grow in nervous or endocrine tissue and tend to

behave in a more indolent fashion than adenocarcinomas, 5

Oncology: branch of medicine which deals with the diagnosis and treatment of malignant

tumors, 3

Palliation: methods intended to relieve cancer symptoms rather than effect a cure, 3

Pancreas: a long gland which sits behind the stomach and secretes digestive juices into the

small intestine and bloodstream, 7

Pancreatic cancer: cancer of the pancreas or periampullary region, 7

Pancreaticoduodenectomy: see Whipple procedure, 12

Periampullary region: area containing the duodenum, distal common bile duct, and ampulla

of Vater, 7

Portal vein: vein that transports blood from the digestive tract, spleen, pancreas, and

gallbladder to the liver, 10

QoL: quality-of-life scores for wellbeing (also known as Karnofsky scores), consult Table 1,

4

R-Stage: refers to tumor growth on margins of surgically excised tissue: 0 for clean margins,

1 for microscopic tumor growth, and 2 for gross tumor growth, 5

Radiotherapy: treatments which use irradiation to destroy cancerous cells, 3

Resection: surgical excision of tumor growth from bodily tissue, 3

Serum study: a blood test, which may include nutritional levels, liver functions, and molec-

ular tumor markers, 6
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Splenic vein: vein generated from several smaller veins which meet at the front surface of

the spleen, 10

Stenting: propping open an anatomical vessel with a metal or plastic stent, 3

Superior mesenteric artery: artery which originates from the upper aorta which supplies

the small intestines and colon, 10

Superior mesenteric vein: vein which begins at the ileum and joins behind the pancreas

with the splenic vein, 10

T-Stage: refers to primary tumor size, ranges from 0 to 4 or ’is’ for in situ growth, 5

Tumor markers: molecular systemic indicators of certain cancer forms, 6

Tumor: a distinct mass in a tissue or organ, 3

Ultrasound: use of ultrasonic waves to create a sonographic visualization a body’s internal

structure, 6

V-Stage: refers to tumor invasion into veins, 0 if absent and 1 if present, 5

Vasculature: blood vessels; penetration of tumors into vasculature can be an important

factor in determining the spread and resectability of the disease, 5

Whipple procedure: most common surgical procedure to treat pancreatic cancer, 12

X-ray: the process of visualizing an internal body image by catching high-energy photons

on photographic film, 6
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