AprioriSetsAndSequences:
Mining Association Rules from Time Sequence Attributes

by
Keith A. Pray
A Thesis
Submitted to the Faculty
of the
WORCESTER POLYTECHNIC INSTITUTE
In partial fulfillment of the requirements for the
Degree of Master of Science
in
Computer Science

by

May 6, 2004

APPROVED:

Professor Carolina Ruiz, Major Thesis Advisor

Professor Matthew O. Ward, Thesis Reader

Professor Michael A. Gennert, Head of Department



Abstract

We introduce an algorithm for mining expressive temporal relationships from complex
data. Our algorithm, AprioriSetsAndSequences (ASAS), extends the Apriori algorithm to
data sets in which a single data instance may consist of a combination of attribute values
that are nominal sequences, time series, sets, and traditional relational values. Datasets
of this type occur naturally in many domains including health care, financial analysis,
complex system diagnostics, and domains in which multi-sensors are used. AprioriSet-
sAndSequences identifies predefined events of interest in the sequential data attributes.
It then mines for association rules that make explicit all frequent temporal relationships
among the occurrences of those events and relationships of those events and other data
attributes. Our algorithm inherently handles different levels of time granularity in the
same data set. We have implemented AprioriSetsAndSequences within the Weka envi-
ronment and have applied it to computer performance, stock market, and clinical sleep
disorder data. We show that AprioriSetsAndSequences produces rules that express sig-
nificant temporal relationships that describe patterns of behavior observed in the data

set.



Contents

1 Introduction

1.1 Context of This Research . . . . . . . ... . ... ... ... .......
1.2 Motivation . . . . . . . ... e e
1.3 Problem Definition . . . . . . .. .. ... ... L
1.4 Contributions of This Work . . . . . .. ... .. ... ... .......

2 Background

2.1 Association Rules . . . . . ... ... ... ... .
2.2 Apriori Algorithm . . . . . . . . ... ...
2.3 Pattern Matching . . . . . .. ..o Lo
24 Wekaand ARFF . .. .. ... ... ... .. .. ... ..
2.5 Apriori Sets Algorithm . . . . . . .. ... oL

3 Related Work

4 FEvent Attributes and Event Identification

4.1 Description of Sequence Attributes . . . . . . .. .. ...
4.2 Description of Event Attributes . . . . . .. . ... ... 0L
4.3 Event Identification . . . . . . .. ..o Lo 0oL

5 Data Representation

5.1 Extension of ARFF . . . . . . . . . s
5.2 ASAS Ttem Sets . . . . . . . . s
5.3 Item Set Data Structures . . . . . . . . . . . . ..

6 ASAS Algorithm

6.1 Input. . . . . . . . . e
6.2 Frequent Item Set Generation . . . . . . . .. .. . ... ... .. ....
6.2.1 Level 1 Candidate Generation . . . . . ... ... ... ......

B W

© 0 0w N O S

10

14
14
15
16

19
19
20
23



ii

8

CONTENTS
6.2.2 Level 1 Counting Support . . . . ... ... ... ... ...... 29
6.2.3 Level 2 Candidate Generation . . . . . ... ... ... ...... 30
6.2.4 Level 2 (and up) Counting Support . . . . ... ... ... .... 31
6.2.5 Level 3 (and up) Candidate Generation . . . . . .. .. ... ... 33
6.2.6 Multiple Events of The Same Type . . . . .. . ... ... .... 35
6.2.7 Duplicate Item Sets . . . . . . .. ... 36
6.3 Rule Generation: Calculating Confidence . . . . . . .. ... ... .. .. 39
ASAS Implementation 44
7.1 Data Preprocessing Filters . . . . . . ... ... ... ... ... .. 44
7.2 Implementing Rule Generation . . . . . .. .. .. ... ... ... .... 46
7.3 Support Counting Prune . . . . . . . .. ..o oL 46
7.4 Other Features . . . . . . . . . . . . . . . . . 47
Experimental Evaluation of ASAS 49
8.1 Evaluation on The Computer Performance Domain . . . .. .. ... .. 49
8.1.1 Data Collection . . . . . . . . . ... .. ... .. 49
81.2 Rules. . . . . . . . . o 50
8.1.3 Summary of Results . . . . . ... ... .. ... ......... 52
8.2 Evaluation on The Stock Market Domain . . . . . . . . . ... ... ... 53
8.2.1 Stock Market Data . . . . ... ... ... .. .. ... .. ..., 53
822 Rules. . . . . . . e 54
8.2.3 Summary of Results . . . . .. ... ... ... . ... ...... 60
8.3 Evaluation on The Human Sleep Domain . . . . . .. . . ... ... ... 60
8.3.1 Clinical Sleep Data . . . . . . ... .. ... ... ... ...... 60
83.2 Rules. . . . . . . 61
8.3.3 Summary of Results . . . . .. ... ... ... ... ....... 63
8.4 Performance Evaluation of ASAS . . ... ... ... ... ........ 63
8.4.1 TimetoMine . . . . . . . . . . .. ... 64
8.4.2 Effect of Increasing Maximum Number of Same Type Events Al-
lowedinaRule . . ... ... ... ... .. ... ..., 67
Conclusions and Future Work 71
9.1 Conclusions . . . . . . . . . . e 71
9.2 Future Work . . . . . . . . . o 72
9.2.1 ASAS Extensions . . . . . . . .. .. ... ... 72

9.2.2 Improve Candidate Generation . . . . ... ... ... ...... 72



CONTENTS iii

9.2.3 Improve Support Counting . . . . . . . .. ... ... ... 76

9.2.4 System Features. . . . . . . . .. .. ... L. 7
A Appendix Readme File 86
B Appendix ASAS Log Metrics 94
C Appendix Computer Performance Metrics 97
D Appendix Computer Performance Data 100
E Appendix Stock Market Data 105

F Appendix Sleep Data 113



List of Figures

1.1

4.1

4.2

4.3

4.4

4.5
4.6

5.1

5.2
9.3

5.4

3.5

6.1

6.2

A sample of a data set containing complex instances. Here, sequential
values are represented in a graphical manner only for the first row to save

SPACE.  © v i e e e e e e e e e e e e e e e e e e e

A Sequence Example. Here the top row represents a basic time line without
units. The bottom row contains the values of the sequence for the CPU
attribute. . . ... L L
Generating Item Types . . . . . . . . . ..o
Here is the sample data set with the CPU sequence attribute replaced with
the CPU-Increase event attribute. . . . . . . . .. ... ... .. ... ..
Increase Event . . . . . . . . . . . .o
Decrease Event . . . . . . . . . Lo

Sustain Event . . . . . . . ..

An item set containing 3 events. Disk Increase [to, t1], Disk Sustain [to,
t3], Disk Sustain [t4, t5] . . . . . . . . .
Adding the Increase Event 2 to item set in Figure 5.1 . . . . . .. .. ..
Relative Time Line Array. DI = Disk Increase, CI = CPU Increase, b =
begin,e=end. . .. .. ... L
Relative Time Line Array. DI = Disk Increase, CI = CPU, Increase, MS
= Memory Sustain, b = begin,e =end. . . ... ... ... .. ... ..
Relative Time Line Array. DI = Disk Increase, CI = CPU, Increase, MS

= Memory Sustain, b = begin,e =end. . . . ... ... ... ... ...

Level 1 Mapping. DI = Disk Increase, CI = CPU Increase, b = begin, e
=end. . . .. e
All Possible Temporal Relationships Between Two Events. Each event is
depicted by a rectangle (one dark and one light). Numbers in the rectan-

gles denote relative times %o, t1, to, and ¢3. . . . . ... ..o

v



LIST OF FIGURES v

6.3

6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14

7.1

8.1

8.2
8.3

8.4

8.5

8.6

8.7
8.8

8.9
8.10
8.11

Level 2 Mapping. DI = Disk Increase, CI = CPU Increase, b = begin, e

=end. . . .. e 32
Combine Item Sets . . . . . . . . . . . . ... 34
Selective candidate generation by joining events A and B from Figure 6.4 35
Selective Candidate Generation Result . . . . .. ... ... .. ... .. 35
Candidates from Combining Item Sets 1and 2 . . . . . . .. ... .. .. 37
Candidates from Combining Item Sets 1and 3 . . . . . . .. .. ... .. 38
Candidates from Combining Item Sets 2and 3 . . . . . . ... ... ... 39
Prefix Tree. . . . . . . . . . . e 40
Apriori Calculate Confidence . . . . . . . .. ... ... ... ....... 41
ASAS Calculate Confidence . . . .. ... ... ... ... ........ 42
Finding Antecedent . . . . . . . . . ... L L Lo 42
Extending Antecedent to Include Consequent . . . . . . ... ... ... 43
Several Time Granularities . . . . . . . .. .. .. Lo 44

Partial Sample of A Single Performance Data Instance. See Appendix C
and Appendix D for a complete listing. . . . . .. ... ... ... .... 51
Idle Process Time Increases [ty, t;] = Total Process Time Decreases [tg, t1] 52

Total Memory in Use Decreases [to, t;] = Total Process Time Decreases

[to, Ta] « o o 53
Performance Instance. See Appendix C and Appendix D for a complete
listing. . . . . . . e o4

A sample of a company and stock market dataset containing complex

instances. Here, sequential values are represented in a graphical manner

only for the first row to save space. . . . . . . .. ... ... 55
AMD Ascending Triangle [to,t1] and SUNW Sustain [to,t3] = CSCO Ex-

pand Merge [ta,t5] - - . - . - . . 57
INTC Sustain [tg,t;] = INTC Sustain [ta,3] . . . . . . . ... ... ... 59

A sample of a dataset containing complex instances. Here, sequential
values are represented in a graphical manner only for the first row to save
space. G stands for Gender with values M (male) and F (female). Si
denotes sleep stage 7. Medication names have been abbreviated. . . . . . 61
Sleep Stage 1 [to, 2] and Granule 700-749 [¢y, t3] = Mild OSA . . . . .. 62
Sleep Stage 2 [t1, t3] and Granule 150-199 [tg, t2] = Moderately Severe OSA 62
Sleep Stage 3 [t1, t3] and Granule 300-349 [to, to] = No OSA . . . . . .. 63



vi

8.12
8.13
8.14
8.15
8.16
8.17

LIST OF FIGURES

Sleep Stage REM [t1, to] and Granule 750-799 [to, t3] = No OSA . . . . . 63
Data Set Events and Total Mining Time . . . . . ... ... ....... 65
Frequent Item Sets and Total Mining Time . . . . . . . . ... ... ... 66
Data Set Time Line and Mining Time per Frequent Item Set . . . . . . . 67
Data Set Events and Mining Time per Frequent Item Set . . . . . . . .. 68
Diminishing Returns With Higher Number of Same Type Events Allowed

InaRule . . . . . . . 69

8.18 Diminishing Returns With Higher Number of Same Type Events Allowed

In a Rule and Lower Support . . . . .. ... ... ... ... ... ... 70
9.1 Candidates from Combining Item Sets Level 1 . . . . . . ... ... ... 74
9.2 Candidates from Combining Item Sets Level 2 . . . . . . ... ... ... 75
9.3 Candidates from Combining Item Sets Level 1a Improved . . . . . . . .. 76
9.4 Candidates from Combining Item Sets Level 1b Improved . . . . . . . .. 7
9.5 Candidates from Combining Item Sets Level 2 Improved . . . . . .. .. 78
E.1 Rounded Top . . . . . .. . . . . . . ... . 106
E.2 Selling Climax . . . . . . . ... e 106
E.3 Ascending Triangle . . . . . . . . ... Lo oo 107
E.4 Broadening Top . . . . . . . .. Lo 107
E.5 Descending Triangle . . . . . . ... ... Lo oo 108
E.6 Double Bottom . . . . .. ... ... 108
E.7 Double Top . . . . . . . . . . . e 109
E.8 Head and Shoulders . . . . . . . . .. ... ... L Lo 109
E.9 Inverse Head and Shoulders . . . . . ... .. ... ... ......... 109
E.10 Panic Reversal . . . . . . . . . . . ... ... 110
E.11 Rounded Bottom . . . . . . . . . . ... o 110
E.12 Triple Bottom . . . . . . . . . . ... 110
E.13 Triple Top . . . . . . . . . . o 111
E.14 Sustain . . . . . . .. L 111
E.15 Increase . . . . . . . . . e 111

E.16 Decrease . . . . . . . . L 112



Chapter 1

Introduction

1.1 Context of This Research

This paper expands the general use of association rules [AIS93] to complex temporal
relationships essential to many domains. Our association rule mining approach discovers
patterns in data sets whose instances consist of any combination of standard, set-valued,
and sequential attributes. These data sets occur naturally in several scientific, engineer-
ing, and business domains, and are generally richer than the transactional, the relational,
and the sequence data sets to which association rule mining has been applied. To date,
our mining approach has been applied to computer system performance, stock market
analysis [HLO03|, and clinical sleep disorder data [Lax04]. Complex system diagnostics,
network intrusion detection, and medical monitoring are some related domains to which

this work can also be applied.

1.2 Motivation

A main motivation for mining these temporal rules from complex data comes from our
previous experience working on the performance analysis of a hardware and software
backup/restore product. The time it takes to complete a backup can be of great im-
portance. One of the most labor consuming tasks is to predict this time. A rule based
expert system was built as a way to disseminate the performance knowledge used to
predict backup time. This expert system quickly grew to include over six hundred rules.
The need for automating the discovery of new rules was apparent.

To create a rule to handle a new feature or new technology, an estimation is made

about how performance will be affected. Tremendous amounts of information are col-



2 CHAPTER 1. INTRODUCTION

lected to verify that the estimation is accurate. For a small scenario including a backup
server, a single client, the Ethernet network that connects them, and a single SCSI con-
nected tape drive, an average of 2 MB of data can be collected every ten minutes that
a test is run. This includes CPU and memory usage for all processes running on both
server and client, [/O metrics for storage sub-systems and the tape drive and the connec-
tions between them and the client and server machines as well as network traffic. With
a short test run of an hour, analyzing this amount of data manually is very impractical.
The reasoning behind the initial estimation serves to focus analysis efforts but is usually
inadequate. It is often the case that the estimation is not sufficiently accurate and more
analysis must be done to identify the factors behind the observed performance. This
process can take weeks or months and often involves running new tests and collecting
even more data to be analyzed. With our approach to mine association rules from these
data, the resulting rules can be used to focus analysis efforts and possibly explain the
observed behavior.

Figure 1.1 depicts a small sample of the type of complex data set that our mining
approach applies to. In this computer performance data set, each instance (row) cor-
responds to a single test in which a process was run until it completed a task. The
process is a machine learning task using one of five techniques: C4.5, Instance Based
learning, Naive Bayes, or Neural Network Back Propagation. The attributes describe
the conditions under which the test was run and state information collected during the
test including “standard” attributes such as processor speed and physical memory size;
set-valued attributes such as the options or flags that were specified to the process and
which algorithms the process implemented; and sequential attributes such as the CPU
utilization percentage, memory usage, and the total number of processes running over
time. Other such numeric and nominal sequential attributes not shown in Figure 1.1 in-
clude CPU usage of all other processes, memory usage of all other processes, I/O activity
on main storage devices, memory paging, and process state (running, exit normally, exit
without output). All time sequence attributes in a single data instance share the same
time line.

Events of interest in the sequential attributes in this data set include among others in-
creases and decreases in the utilization of a resource (CPU, memory), going above/below
a certain usage threshold, and whether or not a process terminates normally.

A sample interesting temporal pattern in this domain is: “Java processes running a
machine learning algorithm that are not given the -P option, that exhibit an increase in
its memory usage, and that during this increase its memory paging also increases tend

to, with likelihood 82%, exit prematurely”. This temporal pattern is captured by our



1.3. PROBLEM DEFINITION 3

CpPU memory .
ID| flags CPU % (MHz) memory % (kB) algorithms
{neural  net,
1| {-R,-H} 600 523760 |backpropaga-
tion}
2| {H} | 40, 52, 67, 80, ... 600 | 10, 26, 46, 69, 86, ... | 523760 {C45)
3] {-U,-R} | 10,39, 87,96,... | 300 | 19,50, 82, 80, 70 ... | 260592 |{naive Bayes}

Figure 1.1: A sample of a data set containing complex instances. Here, sequential values
are represented in a graphical manner only for the first row to save space.

association rule:

flag=-P-missing & process(java)-mem-usage-increase [to,t2] &
process(java)-page-increase [t1,t2] = process(java)-exit-without-output [¢3,t4]
Conf: 82%.

Here, tg,11,19,t3, and t, are relative time indices that are used to express the relative

order in which these events are observed.

1.3 Problem Definition

The algorithm presented here to mine these temporal relationships, AprioriSetsAndSe-
quences, takes as input a complex temporal data set as described, a set of predefined
event types, and the standard Apriori minimum support and minimum confidence pa-
rameters. An event type is a template of a subsequence of interest in a time sequence
attribute. Our mining algorithm starts by identifying occurrences of these event types in
the corresponding sequence attributes as described in Section 4. Then, it generates all
the frequent relationships among the temporal occurrences of these events and among
these and the other non-temporal attributes. Section 6 describes the algorithm in detail.
Since there are 13 ways of sorting just two events in time (before, after, overlaps, etc.)
[AlI83], and the number of possible orderings of a set of events grows exponentially with
the number of events in the set, central issues in the design and implementation of our
mining algorithm are the strategy used to prune unnecessary orderings from considera-
tion, and the data structures used to effectively handle potentially frequent orderings of
events. We describe these in Chapter 6. This chapter also describes our extensions of

the basic notions of support and confidence needed to handle multiple occurrences of an




4 CHAPTER 1. INTRODUCTION

event or a pattern in a complex data instance. Section 8.4 presents an evaluation of our
mining algorithm in the stock market domain. Section 9.1 summarizes the contributions
of this paper and discusses future work investigating alternative measures of item set
interestingness and alternative search techniques for item set generation in the context

of complex data.

1.4 Contributions of This Work

This thesis work introduces AprioriSetsAndSequences (ASAS), an algorithm for mining
associations rules containing complex temporal relationships. In addition to sequential
attributes, ASAS also handles set valued attributes as well as traditional relational val-
ues. ASAS also has the capability of mining temporal relationships over several time
granularities simultaneously. ASAS uses two data structures specific to event items. The
first indexes time intervals during which the event items in an item set occur. The second
indexes item sets containing event items.

The ASAS algorithm was implemented as an add on to a publicly available machine
learning and data mining tool known as Weka [FWO00]. The file format Weka uses, ARFF,
was extended to handle sequence attributes and event set attributes.

A filter for detecting simple events in sequences was implemented as a data prepro-
cessing filter for Weka. Also implemented as a filter was the ability to create different
time granularities for data sets containing events. A granularity refers to a unit of time
such as a second, minute, hour, month, etc. It can also refer to an interval of time such
as a weekday or weekend, holidays, etc.

Tools for constructing data sets containing sequences from multiple data sets were
built. These tools allowed a single data instance to be create from an entire data set
where each ordered instance in that set represent a single unit of time along a time line
specific to that data set.

A tool for automatically collecting performance data on Windows machines during
the execution of a specific process was built. This created a source of preliminary data
with which to test ASAS during development. This tool automatically transforms output
from the Windows Performance Monitor into an ARFF file.

Also during the course of this work an add on package for Weka consisting of WPI
KDDRG implemented features and algorithms was compiled and maintained. Full doc-
umentation of instructions on use of the add on package and of the all the classes were

also created.



1.4. CONTRIBUTIONS OF THIS WORK 3

For this thesis ASAS was applied to data sets containing computer system perfor-
mance, stock market and company financial, and clinical sleep study data. Also in the
course of this work ASAS was used by other students working with stock market data
[HLO03], clinical sleep study data [Lax04], motif and gene expression data [BFG103], and
intelligent tutoring system logs [Fre04]. In support of these projects, demonstrations,
presentations, individual help sessions, and implementation of additional features were

provided.



Chapter 2

Background

2.1 Association Rules

[AIS93] introduced the application of association rules to market basket data. Different
data representations such as attribute value pairs and relational data have since been

translated into items as originally used in the market basket paradigm.

An association rule simply states that there exists a statistical relationship between
two or more items in a data set. An item is a literal or attribute value pair occurring
in the data set. This relationship is generally shown in the form X = Y where X and
Y are sets of items. The statistic measures commonly used with association rules are
confidence and support. Support is the percentage of the data instances containing both
X and Y. Confidence is the percentage of instances containing X that also contain Y.
Other measures used to describe an association rule are Lift and Chi-Squared. Lift is the
ratio of the percentage of instances containing X that also contain Y and the percentage
of the instance that contain Y. In other words, the confidence of the rule divided by the
support of Y. C'hi — Squared is a test often used to determine if the difference between
observed frequency and expected frequency, if any, is due to some difference in behavior
or by chance. For association rules if the antecedent of the rule makes the consequent
more likely to happen the Chi-Squared value will reflect this. The expected frequency of
the consequent is simply the support of the consequent. The observed frequency is the
percentage of instances containing the antecedent that also contain the consequent. If the

antecedent makes the consequent more frequent then the rule may be more interesting.

6



2.2. APRIORI ALGORITHM 7

2.2 Apriori Algorithm

AprioriSetsAndSequences extends the Apriori algorithm introduces in [AS94]. Specifi-
cally the implementation builds upon AprioriSets [Sho01] which was incorporated into
the machine learning and data mining system Weka [FW00] by [SS02].

In order to understand the development of an algorithm that successfully mines as-
sociation rules from time sequence attributes, it is helpful to examine how Apriori works
and why it is unsuited for this data set. Apriori was introduced in [AS94] with an ap-
plication to market basket analysis, and with a transactional perspective of the input
data.

As input the Apriori algorithm takes a data set which consists of transactions. Each
transaction consists of a list of items which are simply literals. Relational data, or
attribute value data can be easily transformed into a transactional form. This is done
by creating an item for each attribute value pair that exists in the data set. Minimum
support and minimum confidence thresholds are also input to the Apriori algorithm.

As an intermediate step, Apriori produces frequent item sets. An item corresponds to
an attribute-value pair in the case of tabular data. An item set is frequent if its support
is greater than the user specified minimum support. An item set of size k is called a
k-item set. Apriori’s final output is a list of all association rules whose confidence and
support are above the minimum thresholds.

The Apriori algorithm is based on the Apriori principle, which states that every subset
of a frequent item set is also frequent. It first calculates the support of every individual
item by counting the instances that contain the item. Apriori then finds larger and larger
frequent item sets, step by step. The general steps of Apriori’s frequent item set finding

algorithm are shown below.

1. Given a data set create a list of candidate item sets of size £ = 1, one item set for

each item appearing in the data set.

2. For each candidate item set of size k£ count the number of instances in the data set

containing it. This number is the support count of the item set.

3. Remove candidate item sets of size £ not meeting the required minimum support

count. The remaining item sets are the frequent item sets of size k.

4. Generate candidate item sets of size k+1 by joining together each pair of frequent

item sets of size k£ that share k - 1 item in common.



8 CHAPTER 2. BACKGROUND

5. Prune candidate item sets that are known to be infrequent because of the Apriori

principle.
6. Increment k£ by one.

7. Repeat steps 2 through 6 until there are no more frequent item sets or candidate

item sets of size k.

Apriori then generates association rules from the frequent item sets. Association rules
must meet the minimum confidence criteria. The minimum confidence is specified by the
user. The confidence of an association rule is the Probability of the Antecedent given the
Consequent. Other metrics used to describe association rules are Lift and Chi-square.

We use the procedure introduced in [Alv03] to compute these values.

2.3 Pattern Matching

There are many methods available for matching patterns against a sequence. For nu-
meric sequences, these methods include similarity search using Discrete Fourier Trans-
form [Hal00, AFS93], bounding boxes for clustering over a Fourier Transform feature
space [FM94], and dynamic programming time warping [BC95].

To use time warping, patterns are represented as templates. The time axis of a time
series can be stretched or compressed to match the template’s. This makes the length of
the time series negligible in finding a match. By normalizing along the other axis, one
can match template patterns regardless of scale as well.

For nominal sequences, work has been done to discover common patterns in transac-
tional sequences [SA96]. These are all valid methods for specifying and identifying events

for AprioriSetsAndSequences.

2.4 Weka and ARFF

Weka is a machine learning and data mining system from the University of Waikato, New
Zealand [FWO00]. It provides an infrastructure for developing machine learning and data
mining algorithms. It provides filters for preprocessing of data. Weka is an open source
system written in Java. AprioriSetsAndSequences is implemented as an add on for Weka.
Identification of events in sequences is implemented as add on filters for Weka.

Weka uses the Attribute-Relation File Format (ARFF) to store and retrieve data
sets. It consists mainly of a header section and a data section. the header section lists



2.5. APRIORI SETS ALGORITHM 9

each attribute and its data type. Supported data types are numeric, nominal, string,
and date. In the data section each line of text, denoted by a carriage return, represents
a single instance in the data set. Values for each attribute in the header appear in the

order specified in the header and are separated by commas. A sample of ARFF is below.
@relation A sample ARFF file’

@attribute x numeric
% this is a comment, following is a nominal attribute
@attribute color <red,blue,green>

@attribute name string

@data
2, green, keith

4.5, red, carolina

2.5 Apriori Sets Algorithm

AprioriSets [Sho01] is an extension of the Apriori algorithm to mine association rules
from set valued data. Instead of an attribute having a single value it has a value that
is a set of elements. Set valued attributes are transformed into items for use in Apriori
by defining an item for each attribute and set element pair. AprioriSets was added to
the Weka system [SS02]. AprioriSetsAndSequences adds the ability to mine associations

from time sequence attribute and event attribute types to AprioriSets.



Chapter 3

Related Work

There has been a great deal of interest in devising approaches to mine associations from
sequential data. This interest has taken the form of work which aims to find associations
using temporal information and finding associations which contain temporal information.
Dunham [Dun03] and Han and Kamber [HKO01] offer excellent summaries of temporal
mining terms and algorithms currently known. Roddick and Spiliopoulou [RS02] provide

an excellent survey of temporal knowledge discovery.

Ale et al. [AROO] use the time of a transaction as a rule pruning method allowing
the use of lower support to find more interesting rules. It also uses this information to
declare rules obsolete if the transactions that support a rule are from a certain distance
in the past. It does not produce rules that express temporal relationships between the

items in a rule as does AprioriSetsAndSequences (ASAS).
Agrawal and Srikant [AS95] and Zaki [Zak00] use the notions of time window and

maz/min gaps to address the complexity of the mining task. Zaki considers item set
constraints for this same purpose. One difference between ASAS and these approaches
is that the notion of event in ASAS is a non-trivial time interval and theirs is a point
in time (instantaneous events). This has a profound impact on the expressiveness of
our association rules and on the complexity of the mining process, as in our case the
possible orderings of two single events is 13 while for them that number of orderings
in only 3. Another important difference is that in the ASAS approach data instances
that are combinations of several attribute types are considered, while their instances are

sequences of transactions.

A notion similar to time windows is used by Chen and Petrounias [CP99] to identify
periods of time during which a particular association rule is valid. The rules themselves

contain no temporal information otherwise.

10



11

Mannila et al. [MTV95, MT96] present a method for finding episodes. An episode
is a collection of events occurring inside the same window of time. Here events refer to
instantaneous occurrences occupying a single unit of time. The temporal relationships
possible between two events with this representation is limited to three. The two events
can occur at the same time, one before the other, or one after the other. AprioriSetsAnd-
Sequences uses a representation where events occur during an interval. Hence there can
be thirteen possible temporal relationships between events. This is more expressive and
enables AprioriSetsAndSequences to utilize more information in the data set.

A common method for mining patterns from time sequence data sets is using a tem-
plate to narrow down the many possible patterns to mine for. Although not explicitly
stated, work by Oates et al. [OSGC95] can be thought to be using a template of sorts.
Dependencies between events occurring in multiple streams are found. A dependency
taking the form A = t B with a certain probability. A is a set of events occurring at
time ¢. B is a set of events occurring at ¢ + ¢t. The size of A and B are fixed as is time
t. These restrictions effectively form a template which narrows down the search space of
dependencies. The algorithm is not directly comparable to an Apriori-like algorithm such
as Apriori Sets And Sequences since it does not find all possible dependencies (rules) fit-
ting the criteria specified by the user. The data set accepted by the algorithm presented
by Oates et al. would constitute a single instance of an AprioriSetsAndSequences data
set. The events are instantaneous instead of ASAS interval based events.

Bettini et al. [BWJL98] use a template consisting of event variables and the time
between events. The time can be expressed in multiple granularities. The sequence of
events could be defined along a time line with seconds as the unit of measure. Possible
granularities include minutes, hours, days, business days, weeks, etc. In [BSJ96, BWJL98|
timed automata are used to count all the possible solutions to the template specified by
the user. Also specified by the user is the first occurring event type in the template. This
is necessary for deciding when to create another automata to determine if an occurrence of
a specific instantiation of the template is present and as a basis for calculating confidence
of the frequent patterns found. Later work with granularities [LWJO00] propose three
algorithms that follow an Apriori-like generate and count method for finding temporal
patterns. Requiring a template from the user assumes the user has a great deal of
knowledge about the data set. It also precludes the finding of novel, unexpected patterns.
The ASAS approach is more general than theirs in that the user is not restricted to use
just one temporal template for each mining task, as ASAS considers all possible temporal
patterns that are frequent. Also, several time—granularities can be explored during the

same mining task, just by defining an event-based attribute for each relevant time-



12 CHAPTER 3. RELATED WORK

granularity and letting them “intersect” with other events of interest. The events in
these time—granularity attributes would simply define intervals of the time granularity it
represents. For a real time line whose units are days the time-granularity attribute for
weeks would identify an event for every seven days along the real time line.

An interesting approach of using templates to mine temporal information can be
found in [FLYH99, LFH00, TLHF03]. by Feng et al. Rules that associate items between
transactions where transactions represent successive units of time are mined. A template
for a rule specifying temporal constraints on items is used to restrict the search for asso-
ciation rules. If each data set in this approach were used to create a single instance of a
data set, that resulting data set would be of the same form as used in AprioriSetsAndSe-
quences. ASAS does not require the use of a template to produce temporal association
rules.

There has been work that produces association rules containing events occurring
during intervals that does not use templates. An algorithm presented by Rainsford and
Roddick [RR99] takes as input a data set of regular transactional instances where some
of the items may contain temporal information specifying the time or interval during
which the item is valid. It does not allow for multiple occurrences of events in the same
instance. The rules produced have, in addition to the common association rule confidence
measure, a temporal confidence factor. For pairs of events in an association rule there
may be a frequently observed temporal relationship. The temporal confidence factor is
the percentage of instances that support the regular association rule that also support the
temporal relationship. All pairs of events may not have a frequent temporal relationship.
This leaves some ambiguity to the rules found and may make it difficult to apply those
rules.

Another example of mining for rules without the use of a template is presented by
Mannila et al. [DLM*98]. The input data set is a numeric sequence or set of numeric
sequences. All of these sequences share the same time line. A whole data set here
could be translated into a single instance for AprioriSetsAndSequences. Each sequence
is partitioned into windows, the size of which is a user specified parameter. The windows
are clustered based on similarity and assigned an identifier. The original sequences are
then partitioned and these partitions are labeled with the cluster identifiers. ASAS relies
on events being discovered in the sequences as a preprocessing step. This is more flexible
allowing any event detection method to be used. Rules found from this data are in the
form A = B where B follows A in T time units. ASAS finds more general rules that
include any temporal relationship between A and B.

There is another track of work to find interesting patterns in sequences. Mining



13

for patterns in sequences is related to mining temporal association rules. Srikant and
Agrawal [SA96] use a modified Apriori algorithm to mine patterns from transactional
sequences. These interesting patterns could be used to identify events in data sets for

algorithms accepting events occurring over intervals.



Chapter 4

Event Attributes and Event

Identification

4.1 Description of Sequence Attributes

1.2 3 4 & 6 7 & 89 10 11 12 13 14 15 16 17 18 18 20 21 22 23 24 25 26 27 2B 28 30
--—Disk 5 & 7 & % 10 9 & 7 5 3 2 2 &5 5 5 2 2 3 4 5 65 7 ¢FT 7T ¢ V¢V 7T TV

Figure 4.1: A Sequence Example. Here the top row represents a basic time line without
units. The bottom row contains the values of the sequence for the CPU attribute.

AprioriSetsAndSequences deals with two data types not commonly found in data
mining systems, time sequences and events. A time sequence is an ordered list of values,
each associated with a time of occurrence along a time line specific to the data instance
the sequence is a member of. Figure 4.1 shows such a sequence. The top row of numbers

is the time line. The bottom row of numbers are the values in the sequence.

A time sequence has a real time line associated with it. This time line can be explicit
or implicit. The values in an explicit real time line can be in any units and the distance
between each point on the time line does not need to be uniform. This time line represents
the actual time at which a value in a time sequence was observed. The events that are
identified in a time sequence use the values along the real time line for their begin and
end times. If an explicit time line is not present an implicit time line can be assumed.
Units are ambiguous unless known to the user and the length between each point on the

line is assumed uniform.

14



4.2. DESCRIPTION OF EVENT ATTRIBUTES 15

4.2 Description of Event Attributes

AprioriSetsAndSequences mines temporal associations directly from events. This keeps
intact the temporal information represented in the data set while eliminating much of
the work involved in scanning the actual sequences during mining. The events are akin

to indexes into the sequences.
CPU-Increase = [t=2, t=6]

An example event is shown above. An event consists of three pieces of information.
First is the time sequence attribute in which the event occurred. In this case the event
can be found in the CPU sequence attribute. Second is the name of the event. An
Increase event was found in the CPU sequence. the Increase event is described in Section
4.3. Third is the period of time during which the event occurred. This CPU-Increase
event begins at time =2 and ends at time t=6. The time sequence attribute name and
the event name together define the event item type. the event type for this example is
“CPU-Increase”. Time sequence attributes can also be contained in the data set but

they are not used directly during association rule mining.

10 -

9

8

7

6

5

4

3 Increase Increase Increase
2 Event 1 Event 2 Event 3
1

0

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21|22 23 24 25 26|27 28 29 30
-CPU 4 5 6 7 8 9 8 7 6 5 4 5 6 7 8 9 8 7 6 5 4|5 6 7 8 9/8 7 6 5

Time
CPU-Increase = { [t=2, t=6], [t=12, t=16], [t=22, t=26] }

Figure 4.2: Generating Item Types

Figure 4.2 shows the time sequence attribute CPU. Highlighted are the Increase events

found in this sequence. To represent these events as input for AprioriSetsAndSequences



16 CHAPTER 4. EVENT ATTRIBUTES AND EVENT IDENTIFICATION

an event set attribute is created. Above is an example of a CPU-Increase event set
attribute. Instead of specifying the begin and end time for a single event as in the
previous example, here there are a set of begin and end time pairs. This event set
attribute will be named for the event type, CPU-Increase. In Figure 4.2 the value of
the CPU-Increase attribute for the instance shown is written as it would appear in an
ARFF file. Figure 4.3 shows the data sample first shown in Figure 1.1 but with the
CPU sequence attribute replaced with the newly formed CPU-Increase event attribute.
Details on the ASAS extension to ARFF can be found in Section 5.1.

CprU memory .
ID| flags CPU-Increase (MHz) memory % (kB) algorithms
{[t=2, t=6], {neural  net,
1| {-R,-H} | [t=12, t=16], 600 523760 |backpropaga-
[t=22, t=26]} tion}
2] {0} | {{t=4, t=26]} 600 | 10, 26, 46, 69, 86, ... | 523760 {C4.5)
3| {-U, -R} {[F=22,  =106], [ 45, | 19 50, 82, 80, 70 260592 | {naive Bayes}
: [t=202, t=207]} ) OF 05 O8 10 - Y

Figure 4.3: Here is the sample data set with the CPU sequence attribute replaced with
the CPU-Increase event attribute.

4.3 Event Identification

An event has a begin and end time that annotates its occurrence along a time line specific
to the data instance the event is a member of. All the events of a single type that occur
in a single instance are stored as an event set attribute. An event set is simply a set
attribute where the elements are all events of the same type. A type is a time sequence
attribute and event type pair.

All the time sequences from the sample domain, computer system performance, are
numeric. In order to demonstrate AprioriSetsAndSequences, events must be detected
in these numeric time sequences. The events used are Increase, Decrease, and Sustain.
They are described below and shown in Figures 4.4, 4.5, and 4.6. These are very simple.
They are simple so the results can be easily understood. They can be used in conjunction

to describe any numeric time sequence.

Increase event is defined as a sequence of values where each subsequent value is larger

than the one before it.




4.3. EVENT IDENTIFICATION 17

Decrease event is defined as a sequence of values where each subsequent value is smaller

than the one before it.

Sustain event is defined as a sequence of values where each subsequent value does not

differ from the mean of the values before it by a user set tolerance.

Increase

Value

Time

Figure 4.4: Increase Event

Decrease

Value

Time

Figure 4.5: Decrease Event

It is important to note that the events detected should have some meaning to the
user and to the domain from which the data set comes. These events will be used in
the association rules produced. If their meaning is not clear to the user the rule will not
benefit the user.

The simple event detection was implemented as a Weka filter. Filters are the main
means for preprocessing data in Weka. The event filter reads in a data set containing
time sequence attributes. For each time sequence attribute and each type of event pair,
it adds an event attribute if that event type is detected in the time sequence. The
individual events’ begin and end time is noted according to the real time line for a

particular instance.



18 CHAPTER 4. EVENT ATTRIBUTES AND EVENT IDENTIFICATION

Sustain

Value

" Time

Figure 4.6: Sustain Event

More advanced event detection based on methods discussed in Section 2.3 can be
implemented. An event detection tool was developed by Holmes and Leung [HL03] which
extended the dynamic programming approach to time warping presented by Berndt and
Clifford [BC95]. That tool is used to identify events in the stock market data appearing

in Section 8.2.



Chapter 5

Data Representation

5.1 Extension of ARFF

Weka uses the ARFF data file format. There is no provision for time sequence attributes,
event attributes, or set attributes in ARFF or Weka. Work done at WPI [Sho01] has
incorporated set attributes into the ARFF file format by overloading the string data
type. Weka ignores the set specific notation and treats the value as a string with no
other meaning. This same approach was used to store time sequence attributes and
events in ARFF.

@relation A sample ARFF file with sequences’

@attribute 'CPU(MHz)’ numeric

@attribute algorithm <back-propagation, naive-Bayes, C4.5>
% the following attribute will be a sequence

@attribute CPU string

@Qdata
600, back-propagation, '4:5:6:7:8:9:8:7:6:5:4:5:...7:6:5’

Above is an ARFF sample containing a sequence attribute CPU. The full sequence
is the same present in Figure 4.1. A time sequence is stored as a list of values each
delimited by a colon ’ : ’. Each value corresponds to the time value in the same position

as in the time line sequence. This detail is only important to event detectors that

19



20 CHAPTER 5. DATA REPRESENTATION

concern themselves with the absolute time at which certain values occur when detecting
events. For many purposes the relative order of the time sequence values is enough. This
format allows for more complicated representations such as a nonuniform time line where
increments in time are not consistent.

An event uses the same delimiter as a sequence but there are only two values in the
sequence. The first is the begin time of the event and the second is the end time of the
event. In this work the convention of using a caret ’ ~ ’ has been adopted to delimit values
in a set attribute. An event attribute would then have zero or more events represented

as sequences of two values each delimited by carets.
CPU-Increase = { 3:8 ~ 13:18 " 23:28 }

Shown above is the example of an event attribute for the CPU time sequence attribute
shown earlier. The CPU time sequence attribute is the percentage of CPU usage in the
overall computer system. This event attribute specifies when the CPU usage increases.
Increases occur from time 3 to time 8, 13 to 18, and 23 to 28. Below is the sample ARFF
file with the CPU-Increase attribute.

@relation A sample ARFF file with sequences’

@attribute 'CPU(MHz)’ numeric

@attribute algorithm <back-propagation, naive-Bayes, C4.5>
% the following attribute will be a sequence

@attribute CPU string

@attribute CPU-Increase string

@data
600, back-propagation, '4:5:6:...7:6:5°, '{3:8 ~ 13:18 ~ 23:28}’

5.2 ASAS Item Sets

The attribute value format of the data set is common among data mining tools. In order
to mine association rules from this data it is translated into an item representation. Each

possible attribute value pair that exists in the data set is defined as an item and given



5.2. ASAS ITEM SETS 21

an integer number called the item number. In AprioriSetsAndSequences there are two
kinds of items. Regular items are formed from attribute value pairs where the value is
not a sequence or an event set. The regular items are uniquely identified by their integer
number. Event items are formed from attributes whose values are event sets. While
event items are given an item number it is still necessary to interpret the item’s value
during the association rule mining process.

In the item sets of ASAS a second time line is used in addition to the real time line.
This is the relative time line. The relative time line always begins at time 0. There are
no units implied. The distance between each point on the relative time line is always 1.
Each point on the relative time line corresponds to the begin times or end times of one
or more events in the item set.

All the event items in an item set have a begin and end time. The begin and ends
times of events are often treated as individual pieces of information. The begin and end
times are sorted in ascending order with no regard to which event the begin or end times
belong to. They are not treated as pairs for sorting purposes.

The relative time for each begin and end time are simply the position each holds in
the sorted list. If the user requires absolute time to be used in mining the temporal
associations events can be detected that are specific to the length of events or time

between events.

10

9

8

7

5]

5 "

4 Increase

3 Event 1

2 Sustain Sustain
1 Event 1 Event 2
0

12 3 4 & B |7 & 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 20 20
—-+—Disk 5|6 7 & 9 10/ &8 7 5 3 2 2|5 5§/ &§ 2 2 3 4 5|8 7 7, 7 P 7 7P 77

‘ ‘ ‘ Time ‘
T

0 1 2 3 4 5

Figure 5.1: An item set containing 3 events. Disk Increase [to, t;], Disk Sustain [ts, t3],
Disk Sustain [t4, t5]



22 CHAPTER 5. DATA REPRESENTATION

Figure 5.1 shows the events in an item set and its real and relative time lines. The

item set depicted textually is shown below.

Real Time
{ Disk Increase [t=2, t=6|, Disk Sustain [t=14, t=16], Disk Sustain [t=23, t=30] }

Relative Time
{ Disk Increase [ty, t1], Disk Sustain [ts, 3], Disk Sustain [t4, t5] }

Here there are three events in the item set, a Disk-Increase Event, and two Disk-
Sustain Events, 1 and 2. On the real time line the first event, Disk-Increase Event begins
at time t=2 and ends at time {=6. The real begin and end times for Disk-Sustain Event
1 are t=14 and t=16, respectively. The real begin and end times for Disk-Sustain Event
2 are t=23 and t=30, respectively. On the relative time line Disk-Increase Event begins
at time £y and ends at time ¢;. Note, real times are noted by t= to some real value.
Relative times are denoted by ¢_ where the digit following is the relative position. The
relative begin and end times for Disk-Sustain Event 1 are ¢, and t3, respectively. The
relative begin and end times for Disk-Sustain Event 2 are ¢, and ¢5. Adjusting the relative

time line when adding an event item to an item set containing event items is a simple

procedure.
10
g.
B.
7 0 &£ N etk —h
B.
5.
4 Increase
Event 1
3 |
2 | Sustain Increase Sustain
1 | Event 1 Event 2 Event 2
0 112 3 4 5 6 7 & 9 10 11 12 13 14 15 16 17 1818 20 21 22 |23 24 25 26 27 28 29 30
—4—Digk S G  F7 | &89 90 %9 8 ¥ 5 3 2 2 & &5 68 2 2. 3 . 4. 5 & Ff47 . ¥ ¥ F. Q9. ¢8.T
‘ ‘ Time ‘ ‘
T T T T T T | |
0 1 2 3 4 5 6 7

Figure 5.2: Adding the Increase Event 2 to item set in Figure 5.1



5.3. ITEM SET DATA STRUCTURES 23

Let us add a second Disk-Increase event to this item set. Disk-Increase Event 2 has
real begin and end times of t=19 and {=23. The begin and end times for the new event
item are inserted into the sorted list of begin and end times according to the real time
line. The begin and end time for each event now in the item set is then renumbered with
the relative time according to their order in the list. Figure 5.2 shows the item set after
an event is added along with the renumbered relative time line. As shown the relative
times for Disk-Increase Event 1 and Disk-Sustain event 1 are the same. The relative times
for the new event, Disk-Increase Event 2 are t; and t5. The new relative times of Disk-
Sustain Event 2 are t5 and t;. These relative times clearly show the temporal relationship
between these two events. Disk-Increase Event 2 overlaps Disk-Sustain Event 2.

The data set instances share the same data representation as the item sets in ASAS.
They both contain the same meta data about event items and the same code is used to

store each. Functionality described for item sets is the same for data set instances.

5.3 Item Set Data Structures

In Apriori an item set is simply a list of integers. Each integer is a reference to a specific
literal found in the data set. The list is commonly stored in an array.

In AprioriSetsAndSequences an item set is also a simple array of integers representing
a set of items. However, some of these items may be events. Events occur during intervals
of time and these intervals are used to determine if an item set is frequent. Rather than
retrieving the literal for an event item and parsing it to discover the time it begins and
ends every time the item set is compared to another item set or to an instance from the
data set, the begin and end times are stored in an item set when the event is added to
the item set.

Take the item set A shown below.
A: { Disk Increase [t=5, t=25|, CPU Increase [t=10, t=40] }

The Disk Increase event beginning is the first thing to happen in this item set. Sec-
ondly, the CPU Increase event begins. Thirdly, the Disk Increase event ends. Fourthly,
the CPU Increase event ends. If we number, starting from 0, in chronological order, the

begin and end of the events in item set A we obtain the relative times shown below.
A: { Disk Increase [ty, t2], CPU Increase [t, t3] }

ASAS uses an array to represent an item set’s relative time line. Each element in the

array represents a unit of time along the relative time line as denoted by its index. Stored



24 CHAPTER 5. DATA REPRESENTATION

at each index of the relative time line array is a list of the begin and end of events that

occur during that time. The relative time line array for item set A is shown in Figure

5.3.
DIb Clb DIe Cle DI =DiskIncrease [ ]
I — CI = CPU Increase [
| MS = Memory Sustain
| b = begin
0 1 2 3 e = end

Figure 5.3: Relative Time Line Array. DI = Disk Increase, CI = CPU Increase, b =
begin, e = end.

Item set A with its new relative times is shown below.
A: { Disk Increase [ti, t3], CPU Increase [ta, t4], Memory Sustain [to, t4] }

Let us see what happen to the relative time line when we add the event item Memory
Sustain [t=3, t=40] to item set A.

MSe
MSb DIb Clh DIe Cle

DI = Disk Increase [
CI = CPU Increase
MS = Memory Sustai
b = begin

e =end

Figure 5.4: Relative Time Line Array. DI = Disk Increase, CI = CPU, Increase, MS =
Memory Sustain, b = begin, e = end.

Since the Memory Sustain event begins at real time 3, before the real begin time
of the Disk Increase event, the relative time line which always begins at 0, labels the
Memory Sustain begin as relative time 0. The Memory Sustain event ends at the same
real time that the CPU Increase event ends. Notice how the list of labels for relative
time 4 contains both the end label for the CPU Increase event and the end label for the
Memory Sustain event. Lastly, let us add another Disk Increase event to item set A. We
will number the Disk Increase event so we don’t confuse it with the first. This event will
be Disk Increase 2 [t=1, t=45].

Item set A is shown below.



5.3. ITEM SET DATA STRUCTURES 25

MSe

DI2bMShb Db Clh DIe Cle DI2e | DI =DiskIncrease [0 ]

CI = CPU Increase |
MS = Memory Sustai

b = begin
0 1 2 3 4 5 6 e = end

Figure 5.5: Relative Time Line Array. DI = Disk Increase, CI = CPU, Increase, MS =
Memory Sustain, b = begin, e = end.

A: { Disk Increase [t2, t4], CPU Increase [t3, t5], Memory Sustain [t1, t;],
Disk Increase 2 [to, tg] }

Although in this example we used the term “Disk Increase 2” to refer to the second
disk increase event in the ASAS implementation the two disk Increase events are of
the exact same type. at the beginning of this section is was said that the items in an
item set are stored as an array of integers. The integers representing Disk Increase and
Disk Increase 2 are different. The string literal attribute name for the items are the
same, namely “Disk Increase”. Rather than parse the string literal each time to reason
temporally or even discern is an item is indeed an event, this information is saved inside
the item set itself when the event item is added. The type or attribute name of the event
is stored in a hash table with the integer value as the key. To tell if an item is an event
in a particular item set one has simply to ask the hash table if that item integer key is

present.



Chapter 6

ASAS Algorithm

6.1 Input

AprioriSetsAndSequences takes as input a data set consisting of instances. Each instance
has a set of attributes. Each attribute can be of type nominal, set, or event set. If
temporal associations are to be mined the data set must contain event sets. An event
set is simply a set whose elements are events. The standard minimum support and
minimum confidence parameters are also specified as input. ASAS also takes a variety
of other parameters controlling the form of the rules shown as output to the user. These
include the attribute(s) required to appear in the antecedent or consequent of the rules,
the size of the antecedent and consequent, the minimum number of rules, and the option
to iteratively decrease support if the minimum number of rules are not found. Details

on these options can be found in Appendix A.

6.2 Frequent Item Set Generation

1: Given a data set of instances DS, and minimum weight minW
{Size k = 1 Candidate Generation (see Section 6.2.1)}
for all regular items 7 in DS do
create candidate item set c of size k = 1
add 7 to c
add c to candidate list C
end for

List of event types already seen ET = ()

for all event items e in data set do

26



6.2. FREQUENT ITEM SET GENERATION 27

10:
11:

12:
13:
14:
15:
16:

17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:

32:
33:
34:

35:
36:
37:
38:
39:

if event type of e not present in event type list £7" then
create candidate item set ¢ of size k = 1

create a new event item e; with event type of e and begin time = 0 and end time

=1
add ei to ¢
add c to C
add event type of e to ET
end if
end for

{Size k = 1 Candidate Support Counting (see Section 6.2.2)}
for all instances [ in DS do
for all ¢ in C' do
if I contains the item in ¢ then
increment weight of ¢
end if
end for
end for
for all ¢ in C do
if weight of ¢ > minW then
add c to frequent item sets of size k list
end if
end for
remove all from C
while frequent item set of size k list is not empty do
k=k+1
{Size k > 2 Candidate Generation (see Section 6.2.3)}
for all pairs of item sets f1 and f2 in the frequent item sets of size k-1 list do
if f1 and f2 contain event items then
generate 13 candidates, 1 for each possible temporal relationship between the
event items f1 and f2 do not have in common
else
generate 1 candidate by combining f1 and f2
end if
add generated candidate(s) to C
end for
{Size k > 2 Candidate Support Counting (see Section 6.2.4)}



28 CHAPTER 6. ASAS ALGORITHM

40: for all instances I in DS do

41: for all cin C do
42: if all regular items ¢ in ¢ are included in I then
43: if mapping exists between all event items ei in ¢ to event items in [ such

that all temporal relationships are the same then

44: increment weight of ¢
45: end if

46: end if

4T: end for

48: end for
49: for all cin C do

50: if weight of ¢ > minW then
51: add c to frequent item sets of size k list
52: end if

53: end for
54:  remove all from C
55: end while

6.2.1 Level 1 Candidate Generation

In regular Apriori the first level of candidate item sets is generated by simply creating
an item set of size one for each of the items appearing in the data set. These item sets
are added to a list of candidate item sets. The number of instances in the data set that
contain the item sets in this list will be counted. This count is used to calculate the
support of each item set. Only those item sets that have a support equal to or higher
than the minimum support specified by the user will be kept to generate the next level
of candidates.

This basic process is used in AprioriSetsAndSequences with some important differ-
ences. For each regular item in the data set an item set of size one is still created and the
item added to it. This newly generated item set is then added to the list of candidate
item sets.

Event items found in the data set are handled differently. A candidate item set is not
generated for each event item. Event items have a type, usually a name that combines
the original time sequence attribute name and the event detected in the sequence. There
are usually multiple event items of a single type in a data set. Each event item may

have a unique begin and end time. If a candidate item set were created with these event



6.2. FREQUENT ITEM SET GENERATION 29

items with unique begin and end times they would be too specific and a frequent item
set containing them would not likely be found. Instead, a representative event item for
each event type is created. This new item is added to a candidate item set.

For the data set consisting of a single instance shown below we will generate the level
1 candidates.

Data Set:

CPU Increase = { [t=3, t=8], [t=13, t=18], [t=23, t=28] }
Disk Increase = { [t=2, t=6], [t=12, t=23] }
Disk Sustain = { [t=14, t=16], [t=23, t=30] }
Memory Increase = { [t=3, t=8] }
Memory Sustain = { [t=11, t=26] }

Level 1 Candidate Item Sets:

1. { CPU Increase [tg, t1] }

2. { Disk Increase [to, t1] }

3. { Disk Sustain [to, ;] }
4. { Memory Increase [ty, 1] }
5. { Memory Sustain [to, t1] }

6.2.2 Level 1 Counting Support

The support of an item set is the percentage of instances in the data set that contain
the item set. The weight of an item set is the number of instances that contain it. The
weight of an item set is counted and then used to calculate support.

In regular Apriori determining if an item set is included in an instance is a straight
forward procedure. The list of items in the item set is compared to the list of items in
each data set instance. If all items in the item set are found in the instance that instance
counts towards the weight of the item set.

Determining if an item set is included in a data set instance in AprioriSetsAndSe-
quences is not as straightforward. In a data set instance there may be many event items
of one type. The event items in the instance that match the event items in the item set
must be chosen so the temporal relationships between them are the same. When an item
set containing event items is included in an instance their exists a mapping between the
matching event items from the item set to the instance.

Mapping event items is trivial when the item set contains a single event item. This

is because the relative begin and end times are always 0 and 1, respectively. As long



30 CHAPTER 6. ASAS ALGORITHM

as the instance contains an event item of the same type a mapping is guaranteed. This
is the case for all item sets of size one containing one event item. Figure 6.1 illustrates

a mapping between an item set containing a single Disk Increase event and a data set

instance.
Db DIe
Item Set
01
Clb
Ch Cle v oy Dle Cle
DIb MIb DIe MIe MSb Db Clb Dsh DSe Cle DSb MSe pse
Instance  ——f—f—f——f———F————

0 1 2 3 4 5 6 7 8 9 10 11 12

Figure 6.1: Level 1 Mapping. DI = Disk Increase, CI = CPU Increase, b = begin, e =
end.

Even though the example in Figure 6.1 shows a mapping to a specific pair of times
in the instance any pair of times in which a Disk Increase event begins and ends would
suffice. This mapping is not actually done during Level 1 since a single event item is

guaranteed a map to an instance which contains at least one event of the same event

type.

6.2.3 Level 2 Candidate Generation

In regular Apriori, candidate item sets of size two are generated by combining each pair
of frequent item sets of size one. Combining item sets of size one is a simple matter since
each pair results in a valid candidate. The same is true for AprioriSetsAndSequences.
The difference is that for each pair of event items there exists thirteen different item sets
that represent the different temporal relationships [A1I83] those two event items can have
together. Figure 6.2 illustrates these relationships and corresponding relative times.
There being thirteen possible temporal relationships between any two events is a very
important issue when mining for temporal association rules. The search space in this
problem is much larger than regular Apriori and every effort must be made to make it

efficient as possible to obtain results in a reasonable amount of time.



6.2. FREQUENT ITEM SET GENERATION 31

) 01
2 3
! 02
0 1
01
0 2 01
0 2
0 3
0 3
0 2
0 2

Figure 6.2: All Possible Temporal Relationships Between Two Events. Each event is
depicted by a rectangle (one dark and one light). Numbers in the rectangles denote
relative times tg, t1, to, and t3.

6.2.4 Level 2 (and up) Counting Support

Candidate item set weight is counted in Apriori in the same manner as described in
Section 6.2.2 Level 1 Counting Support. For AprioriSetsAndSequences the process is
different. Each instance in the data set is still compared to each candidate item set in
the candidate list. First, the instance must contain all the regular items in the item set.
If they are all present, inclusion of the event items are checked. If the item set contains
only one event item the checking is trivial as described in Section 6.2.2 Level 1 Counting
Support. If the one event item is found the weight of the item set is incremented.

If the candidate item set contains two event items (or more in subsequent levels) then
a mapping must be made from event items in the item set to event items in the instance.
The relative begin and end times of event items in item sets and instances are stored for
quick reference in a item set’s or instance’s relative time line as described in section 5.3.
A mapping between relative times in the item set to those in the instance represents a
partial possible mapping between the begin and end labels of the event items, and hence
a mapping between the event items themselves.

Let us map an item set containing a Disk Increase event and a CPU Increase event

into the instance used in the Level 1 Support mapping example. This mapping is shown



32 CHAPTER 6. ASAS ALGORITHM

in Figure 6.3.

DIb Clh DIe Cle

Item Set I I
0 1 2 3
\cm
Ch Cle . 4 Dle Cle
Db MIb DIe Mle MSb DIb Clb Dsb DSe Cle DSb MSe DSe
Instance  ——f——————————

0 1 2 3 4 5 6 7 8 9 10 11 12

Figure 6.3: Level 2 Mapping. DI = Disk Increase, CI = CPU Increase, b = begin, e =
end.

Note how the event items in the instance which are mapped to from the item set have
the same temporal relationships to each other as the corresponding event items in the
item set.

A mapping is made between an item set’s relative times and an instance’s relative
times by first matching relatives based on begin times of events in the item set. First
the list of begin labels is retrieved from the item set’s relative time line array. Starting
at time 0 in the instance, the earliest time index containing a list of begin labels for
the same type of events as those in the item set is found. Once this corresponding time
index is found it is noted as a possible map for that relative time 0 in the item set. The
remaining time indexes in the item set’s relative time line are mapped in the same way,
always starting at the next relative time in the instance.

Once a possible map is created it is tested using the end time labels. Begin and end
time labels are paired together, belonging to a single event item in the item set. The
corresponding begin and end labels in the instance must belong to a single event item as
well. Furthermore, an event item in the instance can only be mapped to a single event
item in the item set as the begin and end labels must.

Once the map is validated the weight of the item set is incremented. If the map is
found to be invalid the last relative time used in the instance is skipped and another
possible map of relative times is created and tested. This continues until there are no

more relative times left to try in the instance.



6.2. FREQUENT ITEM SET GENERATION 33

6.2.5 Level 3 (and up) Candidate Generation

At the third level of candidate item set generation, generating possible frequent item sets
of size 3, there are ways to eliminate some of the candidates before counting support.
This saves time. The items in an item set are sorted in ascending order according to
their item number. To combine two item sets to form a new item set one size larger there
are a list of conditions that must be met. They must have the same number of items.
The list of items in both item sets must be the same except for the last item which must
be different. Furthermore, the last item in the second item set must have a higher item
number than the last item in the first item set. If two item sets do not meet these criteria
they are not combined to generate a candidate item set. The candidate item set formed
by combining two item sets simply has the superset of the items in each. This is easily

done by adding the last item of the second item set to the first item set.
Combining item sets has been modified for AprioriSetsAndSequences. All of the

conditions still hold for regular items. The event items have to be handled as a special
case. Since there is the possibility of there being more than one temporal relationship
between the same set of event items the item number alone cannot be used to decide
if two item sets should not be joined. Rather, a mapping must exist from all the event
items in the first item set to all the event items in the second item set. This excludes
event items that are the last item in an item set. Once this mapping is found the item
sets can be combined. For an example of such a mapping see Figure 6.3.

As for level two candidate generation, it is possible for more than one candidate item
set, to be generated for each pair of frequent item sets that are combined. The algorithm
for generating these possibilities is more involved than the straight forward iteration of
thirteen possible temporal relationships. When more than two event items are present
the number of temporal combinations grows. This number is limited during candidate
generation by using the relative temporal information contained in each item set.

Consider combining the item sets A and B shown in Figure 6.4. These can be com-
bined since they have the same number of items, a mapping exists between the Disk
Increase event in item set A and the Disk Increase event in item set B, and the event
items listed last in A and B are different. The temporal relationship between the CPU
Increase event in A and the Memory Sustain event in B is not known. Some of the pos-
sible relationships can be eliminated by inferring information from the fact that the Disk
Increase event in both A and B is the same event. Figure 6.5 illustrates this inference.

Combining the two item sets is done by adding the last item from the first item set

to the second item set. In this example the event item Memory Sustain will be added to



34 CHAPTER 6. ASAS ALGORITHM

| CPU Increase |
[ Memory Sustain |

A: { Disk Increase [ty, t2], CPU Increase [t, t3] }
B: { Disk Increase [t1, t3], Memory Sustain [to, t3] }

Figure 6.4: Combine Item Sets

item set A. First, the begin time of Memory Sustain event to be added to item set A must
be determined. In item set B the Memory Sustain event began before the Disk Increase
event began. This temporal relationship must hold for the item sets being generated. In
the item set A there is nothing before the begin time of Disk Increase. Therefore the
only relative time Memory Sustain can begin is one time line value before time 0.

Next the end time of the Memory Sustain event must be determined. From item set
B it can be seen that the Disk Increase event ended before the Memory Sustain event
ended. This means that each relative time in the item set A that occurs after the end of
the Disk Increase event is potentially when the end of the Memory Sustain event occurs.
This includes the times noted in the time line for A and each time in between those
marked times. Figure 6.2 illustrates how two events can be related in time.

The possible begin and end time pairs determined are in relation to item set A’s
existing relative time line. A candidate item set is generated for each pair. In these
candidate item sets the relative time line will be renumbered starting from 0 to include
the Memory Sustain event as shown in Figure 6.5. The resulting candidate item sets are
shown in Figure 6.6

By inferring temporal relationships from the event items in common between the item
sets that are being combined many candidate item sets representing different temporal
relationships can be eliminated and hence save time during mining. An important ob-
servation to make is that this reasoning is only necessary when each item set has more
than one event item. If each item set contains exactly one event item each the gener-

ation of candidates follows the procedure described in Section 6.2.3 Level 2 Candidate



6.2. FREQUENT ITEM SET GENERATION 35

DI = Disk Increase [
CI = CPU Increase e
MS = Memory Sustain [

b = begin
e = end
MSb?
3 37
HSb DIb Clb Dle Cle
3
o \ ||
253 4
! b
Msb DIb Clbh DIe MSe Cle DIb Clb DIe Cle MSe

Nama—— 1 4—‘-%

0 1 2 3 4 5
MSe

Msb DIb Cb DIe Cle

Figure 6.5: Selective candidate generation by joining events A and B from Figure 6.4

{Disk Increase [t1,t3], CPU Increase [ts,t5], Memory Sustain [to,t4]}
{Disk Increase [t1,t3], CPU Increase [t3,ts], Memory Sustain [to,t4]}
{Disk Increase [t1,t3], CPU Increase [t3,ts], Memory Sustain [to,t5]}

Figure 6.6: Selective Candidate Generation Result

Generation.

6.2.6 Multiple Events of The Same Type

It may be that a user wishes to find association rules that contain multiple events of the
same type. As explained in Section 6 rules of this form will not be found. This is due to a
single event item being created to represent all event items in the data set of one specific
type. when frequent item sets are mined only this representative event item can appear
and hence only that representative event item will ever make its way into an association

rule.



36 CHAPTER 6. ASAS ALGORITHM

To overcome this limitation of the Basic ASAS algorithm we allow the user to select
the maximum number of representative event items to be created during the process
described in Section 6.2.1. For example, if a user wants to find association rules that
contain two Memory-Sustain events, the maximum events of the same type parameter

must be set to 2 or higher.

Instead of just: item set # 1. { Memory-Sustain [t,t1] }
we create:
item set # 1. { Memory-Sustain [to,t1] }
item set # 2. { Memory-Sustain [to,t1] }
so that later when these item sets are combined to form Level 2 we can get item sets
that contain two Memory Sustain events:
{ Memory-Sustain [tg,t;], Memory-Sustain [ts,t3] }
}

{ Memory-Sustain [t,t2], Memory-Sustain [t1,t3]

to represent the 13 temporal relationships two events can have as depicted in Figure 6.2.

The number of event items of each event type are counted. For each event type a
number of new event items are created. This number is the maximum number of event
items of the same type specified by the user or the number of event items found in the
data set of that type, whichever is smaller.

The more event items of the same type allowed, the more event items there are to
count support for and use to generate new candidate item sets. The higher the maximum
is set the more work there is to mine, impacting performance negatively. However, the
higher the maximum is set the more potentially expressive the rules found could be.

Since the implementation of ASAS incorporating multiple event of the same type a
more efficient method has been devised but not implemented. Please see Section 9.2.2

for details.

6.2.7 Duplicate Item Sets

Having multiple event items of the same type creates conceptually identical item sets
during candidate generation and in the frequent item set list. Take the item sets 1, 2

and 3 shown below.

1: { CPU Increase [to,t1] }
2: { Disk Increase 2 [to,t1] }
3: { Disk Increase 1 [to,t1] }



6.2. FREQUENT ITEM SET GENERATION 37

Let us combine these to create candidate item sets of size 2. The results are shown
in Figure 6.7, Figure 6.8, and Figure 6.9.

m Level 1 Frequent r Level 2 Candidates
1

1. CPU Increase [t,, t,] /

Disk Increase 1 [t,, t,] & CPU Increase [t,, t,]
Disk Increase 1 [t,, t,] & CPU Increase [t,, t,]
Disk Increase 1 [t,, t,] & CPU Increase [t,, t,]
Disk Increase 1 [t,, t,] & CPU Increase [t,, t,]

3.
. Disk Increase 1 [t,, t,] & CPU Increase [t,, t,]

2. Disk Increase 1 [t,, t, 5
Disk Increase 1 [t t,] & CPU Increase [t,, t,]
Disk Increase 1 [t,, t.] & CPU Increase [t,, t,]
Disk Increase 1 [t,, t;] & CPU Increase [t t,]
Disk Increase 1 [t,, t;] & CPU Increase [t,, t.]
10. Disk Increase 1 [t,, t,] & CPU Increase [t,, t.]
11. Disk Increase 1 [t,, ;] & CPU Increase [t t,]
12. Disk Increase 1 [t,, t.] & CPU Increase [t,, t.]
13. Disk Increase 1 [t t,] & CPU Increase [t; t,]

2
4
6
3. Disk Increase 2 [t,, t,] T
8
9

Figure 6.7: Candidates from Combining Item Sets 1 and 2

Clearly the candidate item sets depicted in Figure 6.7 and those in Figure 6.8 are
conceptually the same. Let us refer to those item sets 1 through 13 as the originals and
item sets 14 through 26 as the duplicates. In order to minimize the time spent counting
support for these duplicate item sets we put them aside and do not count them. We can
do this because those duplicate item sets are guaranteed to have the same support as the
item sets 1 through 13, respectively. All we need is a way to look up which item set the
uncounted item set is a duplicate of. This can be done by using a hash table where the
duplicate item set is the key and the original item set is the value.

To make sure the duplicate item sets do not get counted they are stored in a holding
list called all — candidates. The original item sets are stored in a list called simply
candidates. When a candidate is generated it must be determined if it is a duplicate of
an item set previously generated. During the first phase of ASAS implementation this
was done brute force searching through the candidate list for a duplicate. This was very
expensive and did not save enough time overall.

An improvement was made by making the observation that the candidate item set

generated from an item set that itself was a duplicate increased that chances that the



38 CHAPTER 6. ASAS ALGORITHM

T 1 7 ™ 2 Beils Bl |

m L 11F t ¥
cvel 1 rrequen 7. Level 2 Candidates
14

. Disk Increase 2 [t,, t,] & CPU Increase [t,, t.]
15. Disk Increase 2 [t,, t,] & CPU Increase [t,, t.]
16. Disk Increase 2 [t,, t.] & CPU Increase [t , t.]
17. Disk Increase 2 [t,, t.] & CPU Increase [t,, t,]
18. Disk Increase 2 [t,, t.] & CPU Increase [t,, t.]
19. Disk Increase 2 [t,, t.] & CPU Increase [t,, t.]
20. Disk Increase 2 [t,, t,] & CPU Increase [t t,]
21. Disk Increase 2 [t,, t.] & CPU Increase [t t,]
22. Disk Increase 2 [t,, t,] & CPU Increase [t t.]
23. Disk Increase 2 [t,, t,] & CPU Increase [t t.]
24. Disk Increase 2 [t,, t,] & CPU Increase [t t.]
25. Disk Increase 2 [t,, t,] & CPU Increase [t t.]
26. Disk Increase 2 [t,, t,] & CPU Increase [t t,]

2. Disk Increase 1 [t,, t,]

3. Disk Increase 2 [t,, t,

A1
1. CPU Increase [t,, t,] / /Z
4
5
6
T
8
9
1
1
1
1

Figure 6.8: Candidates from Combining Item Sets 1 and 3

generated candidate item set would be a duplicate as well. The candidate list would
only be searched when one or both of the parent item sets was a duplicate. Even though
performance improved, it was still not enough.

Now we introduce the Item Set Prefix Tree data structure. This tree is like any other
prefix tree in that the first item in a list is taken, removed from the list, and a branch is
traveled based on that item’s value. This continues until there are no more items left and
a leaf of the tree is reached. In our case, the leaf holds a reference to an item set. The
one change made to this idea for the Item Set Prefix Tree is that for event items of the
same type the same branch is followed even though the item number may be different.
This means that once an item set is added to the Item Set Prefix Tree if a duplicate of
that item set is created in the future it can be detected with a number of steps equal to
the number of items in the item set. This greatly reduces the time to find duplicate item
sets.

Let us take the candidate item sets 1 and 14 from our example above. They are

shown below.

1. { Disk Increase 1 [to, t1] & CPU Increase [t, t2 | }
14. { Disk Increase 2 [to, t1] & CPU Increase [t1, to] }

Let us add item set 1 to an Item Set Prefix Tree. The result is shown in Figure 6.10



6.3. RULE GENERATION: CALCULATING CONFIDENCE 39

m Level 1 Frequent
1. CPU Increase [t, t,]
2. Disk Increase 1 [t,, t,]/

3. Disk Increase 2 [t,, t,]/

Aaaagﬂﬂﬂlh\ﬁlﬂ-‘.

Figure 6.9: Candidates from Combining Item Sets 2 and 3

Let us now transverse the tree with item set 14. The first item in item set 14 is
the Disk Increase 2 event. This is a Disk Increase event so we follow the Disk Increase
branch. It has a relative begin time of 0 so we follow the 0 branch. It has a relative end
time of 1 so we follow the 1 branch.The next item is the CPU Increase event. Clearly
we can follow the CPU Increase event branch, begin time branch, and end time branch
shown. This leads us to the leaf containing a reference to item set 1. Item set 14 has
been determined to be a duplicate in two steps without having to compare it to all 13

item set generated before it.

6.3 Rule Generation: Calculating Confidence

Traditionally confidence is defined for a rule A = B as the percentage of instances that

contain A that also contain B. This is usually calculated as:
Support (AB) / Support (A)
Figure 6.11 shows an example of the association rule,

a[to,tl] = b[t2:t3]a



40 CHAPTER 6. ASAS ALGORITHM

Disk Increase «——— Root

— e O

CPU Increase

— W o— N

Item Set # 1

Figure 6.10: Prefix Tree

and a data set containing a single instance. The data set instance has six events
all occurring in succession with no overlap. If the confidence of the association rule is

calculated using the standard method, then the confidence for this rule is calculated as:
Support (a [to, t1] & b [t2, t3]) / Support (a [to, t1])

To get the support we simply count the number of instances that contain the item set
and divide that count by the total number of instances in the data set. For the support
of the antecedent we get 1, or 100%. for the support of the confidence we also get 1.
this leads to a confidence of 100%. This means that the event a is followed by the event
b 100% of the time in our data set. Looking at the instance in Figure 6.11 is it clear
that only one a is followed by a b once. Since there are five a events, b follows a only
20% of the time. Clearly the standard measure of confidence is not adequate for complex
temporal association rules.

Figure 6.12 illustrates the ASAS method of calculating confidence. The same associ-
ation rule and the same instance are used as in the previous example. The goal of this
method was to make confidence an accurate measure of the rule’s success in predicting
the presence of the consequent in an instance. Once the antecedent has been detected,
the consequent, as represented temporally in the rule, should also be detected.

ASAS confidence introduces the concept of event weight. Event weight is simply the
number of times the events in an item set occur in all the instances of the data set.



6.3. RULE GENERATION: CALCULATING CONFIDENCE 41

Confidence = Support (Antecedent & Consequent) / Support (Antecedent)

The only instance b
in data set T 0T
0 1 2 3 4 5 6 7 g8 9 10 11
a [ty t,]1 => b [t,, t,]
Support (a [t t,] & b [t,, t;]) =1
Support (a [ty t,]) =1

Confidence (a [t). ] =>b [, 1))  [E1]

b follows a only 20% of the time
Standard calculation of Confidence is not adequate

Figure 6.11: Apriori Calculate Confidence

An important caveat comes into play if the item set contains non event items. Those
non-event items, or regular items, must be present in an instance before we count the
event weight that that instance contributes to an item set’s event weight. If the regular
items are not present we do not count the event weight of the event items in the item set
from this instance.

Using event weight, the calculation for obtaining confidence is:
Event Weight (Antecedent = Consequent) / Event Weight (Antecedent)

Event Weight (Antecedent = Consequent) means we first find all occurrences of the
Antecedent in the data set. We then take this list of occurrences, essentially a list of
specific item sets, and try to extend each one to include the consequent. That is, from the
instance in which the antecedent item set occurs we try to add other items to the item
set until it contains not only the items in the antecedent but also the consequent. This
newly formed item set must also represent the exact temporal relationships expressed
in the association rule. The number of antecedent item sets we can extend to include
the consequent is the event weight of (Antecedent = Consequent). In other words,
the confidence of a rule is the percentage of occurrences of the antecedent that can be
extended to the entire rule.

Let us calculate the confidence of our example rule. First we need to find the event

weight of the antecedent. There are 5 occurrences of a as shown in Figure 6.13. Next we



42

CHAPTER 6. ASAS ALGORITHM

Confidence = Event Weight (Antecedent => Consequent) / Event Weight (Antecedent)

Event Weight = # occurrences of Antecedent which can be extended to Antecedent &
Consequent

The only instance i [ e
in data set o o

0 1 2 3 4 5 6 7 8 9 10 11
a [ty, t4] => b [t;, t5]
Event Weight (a [t,, t,]) =5
Event Weight (a [t,, t,] & b [t,, §]) =1

Confidence (a [t,, t,] == b [t,, t;])

ASAS calculation of Confidence correctly represents the data

Figure 6.12: ASAS Calculate Confidence

need to see how many of these can be extended to include the consequent. The temporal

relationship expressed in the rule is that b must occur after a with no overlap. The first

a does have a b that follows it as shown in Figure 6.14. The other 4 do not. Therefor we

have an event weight of 1. This makes the confidence of the example rule 20%. Clearly

this way of measuring confidence more accurately represents the data set, and hence the

strength of the rule.

a [ty, t,] => b [ty t5]

Find Antecedent: l

Figure 6.13: Finding Antecedent

Since event weight is counted in relation to the antecedent of a rule being extended

to encompass the consequent of a rule, the event weight counting is done during rule

generation and not frequent item set mining.



6.3. RULE GENERATION: CALCULATING CONFIDENCE

a [ty, t,] => b [ty t5]

Extend to include
Consequent:

Figure 6.14: Extending Antecedent to Include Consequent

43



Chapter 7

ASAS Implementation

7.1 Data Preprocessing Filters

To detect events in sequential attributes an Event Filter was implemented and made
available through the Weka System. The increase, decrease, and sustain events described
in Section 4 are found using this filter. For details on this filter and its options please

see Section A.

Half Month | | |
Weekend
Week [
Work Week

[

Time Line
In Days

|

|

NN
i?BEilD
w

eek begins on Sunday Month ends

Time line serves as smallest granularity

Figure 7.1: Several Time Granularities

A Time Granularity Filter was added for creating different time granularities at-
tributes for data sets containing events. Figure 7.1 shows several different time granu-
larities. The time line has units of days. This forms the smallest granularity possible for

this example. Days can be grouped into weeks, seven consecutive days starting on a par-

44



7.1. DATA PREPROCESSING FILTERS 45

ticular day of the week, in this example Sunday. Granularities can be defined with gaps
between them such as work week and weekend. Granularities can signify a percentage
of time on the time line as does the half month granularity. For examples of association
rules containing time granularity events please see Section 8.3.

There are two major types of granularities the filter currently supports. The first
type of granularity is where granules are indistinguishable from each other. That is a
granule’s the absolute (real) position along the time line is not a defining characteristic.
Only that granule’s relative time can be used for temporal reasoning. Say we had an
item set containing a single minute granule of this type and a CPU Increase event which
occurs during the minute granule. When calculating confidence for a rule in which this
item set was the antecedent, it would not matter where along the time line this granule
appeared. Each occurrence of a CPU Increase and minute granule during which the CPU
Increase happened would count towards the item set’s event weight.

The second type of granularity supported is when each granule is uniquely identifiable.
For example, each minute along the time line is numbered. There is the first minute,
the second minute, and so forth. Take the example from above and make the minute
granule of this type. Say it is the second minute along the time line. Only CPU Increase
events occurring during the second minute of each instance would count towards the
event weight of the item set. For an explanation of how event weight is counted see
Section 6.3.

There are two current ways to decide the length of a granule in a granularity in the
filter. The first is number of unit of time along the time line. A granule size of 60 would
create a granule for each 60 units along the time line. If the time line was in units of
seconds, each granule would correspond to a minute. If the time line was in units of days
each granule would roughly correspond to two months.

The second way of dividing a time line into granules using this filter is specifying
a percentage of the time line. this results in each instance having the same number of
granules per granularity. Currently only a 50% granularity of this type is implemented.
Once need arises the implementation can be easily converted to a generic percentage.

Two other filters created during this thesis were for constructing data sets. The first
added a new attribute to a data set and allowed an attribute value to be specified for all
the instances in that data set.

The second filter takes a data set where the instances are ordered chronologically and
are assumed to be related. The filter outputs a data set containing a single instance. For
each attribute in the input data set a sequence attribute is created in the output data

set. The value for this sequence attribute for the single instance in the output data set



46 CHAPTER 7. ASAS IMPLEMENTATION

is comprised of the ordered values from the instances in the input data set.

7.2 Implementing Rule Generation

Rule generation as implemented in [Sho01, SS02] used a method similar to that of candi-
date item set generation to generate possible association rules which are then evaluated
according to user specified parameters such as confidence, required items, minimum and
maximum number of items, etc. This method being grossly inefficient was not apparent
until event items were introduces to the system by ASAS. The reasoning necessary to
manipulate item set containing events compounded this inefficiency to a point where
rule generation never completed even after a week of run time, hence there being no
comparisons of time between this method and the one implemented for ASAS.

The rule generation implementation used in ASAS starts with the maximal frequent
item sets. Let us think an item set as a simple array of a certain length n. From these n
indexes the algorithm will chose some number to be included in the antecedent of a rule
and some number to be included in the consequent of a rule. This choosing is simply
a permutation of all the number of items contained in the antecedent and of all the
numbers of items contained in the consequent. For example if we had an item set of size
n = 3 the possible respective sizes of the antecedent and consequent would be: { (1,1),
(1,2), (2,1) }. This says 1 item must be chosen for the antecedent and 1 item for the
consequent. Then 1 item for the antecedent and 2 items for the consequent and so forth.

Choosing which items form the item set is also a simple permutation. For example,
for the item set of size 3 there are 3 possible antecedents of size 1, first being the item as
index 0, the second the item at index 1, and the third as index 2.

It is very easy and quick to generate this permutation of corresponding sizes of an-
tecedents and consequents. It is just as easy to generate the index choices for those
antecedent and consequent sizes. this can be thought of as generating a tree of rules.
This methodology also has the added benefit of being able to prune rule generation ac-
cording to the user specified criteria such that entire branches of the tree can be pruned

and even more effort saved.

7.3 Support Counting Prune

An item set pruning step was implemented in ASAS during support counting whose

benefit is not specific to ASAS alone. The number of instances in the data set and the



7.4. OTHER FEATURES 47

minimum support is known during mining. Therefore it is possible to prune a candidate
item set before all instances are seen. This can potentially save many comparisons of item
sets and instances. Let us consider a data set containing 100 instances and a minimum
support of 60%. If a given item set is not found to be included in any of the first 41
instances, it is clear it will never meet the minimum support threshold. There is no
need to compare it to the other 59 instances. In general, if at any point during support
counting the minimum support count minus the current support of the item set is larger
than the cardinality of the remaining set of of instances, then the item set cannot be

frequent.

7.4 Other Features

During the course of this thesis other useful features were implemented that were not
directly related to ASAS. These were to improve the usability of the WPI Weka system
and sometimes upon request of people using the system in their own research.

The ability to load frequent item sets from a cache file so rules may be generated
from them directly was added. This allows for many different confidence values, required
items, and other user specified criteria to be used to find rules without mining for frequent
item sets each time.

The application of ASAS or any data mining technique can be lengthy. Giving the
user information on the progress made so far by an algorithm might be very useful.
Added to the system in this regard is the run-time reporting of system status. The
status of mining and of rule generation are reported in both standard mining and during
rule generation directly from a cache file of frequent item sets.

The metrics Lift and Chi-square, as described in [Alv03], were added to the system.
They are now reported with each association rule found. However, these metrics are not
available for association rules containing events.

In order to characterize and improve upon ASAS and research that will use ASAS
a metric reporting feature was added to the system. A general logging mechanism was
added for association rule mining. It logs various metrics to an ARFF file describing the
behavior of the ASAS algorithm. These include the time in seconds for counting support
at each level, the time to generate candidates at each level, etc. Also logged are statistics
about the data set including the number of events found, average length of the time lines,
etc. A complete list of these metrics can be found in Appendix B.

A Readme file containing complete instructions on the use of WPI’'s Weka add-on



48 CHAPTER 7. ASAS IMPLEMENTATION

package, of which ASAS and the associated filters and utilities are a part, was created.
The Readme file also contains directions on making new filters and association rule mining

algorithms available form the Weka graphical user interface. See Appendix A.



Chapter 8
Experimental Evaluation of ASAS

The associations rules presented here are in the form A = B, where A and B are each a
set of items. Furthermore, events are annotated with their begin (¢,), and end (¢3) times
as such: [t1,t5]. This is followed by the confidence, support, and event weight of the rule.
The minimum and maximum possible length of each event type appearing in the rule is

specified.

8.1 Evaluation on The Computer Performance Do-

main

8.1.1 Data Collection

The original motivation for this work was to assist a software engineering performance
group with very complicated estimation and investigation tasks. The example perfor-
mance paradigm is not as complicated.

The computer system performance domain was used because there exists many basic
and easy to understand behaviors that are fairly easy to measure. Such relationships
as “processor utilization increasing as memory utilization increases” are common, un-
derstood and easy to reproduce. By mining associations of this sort AprioriSetsAndSe-
quences can be shown to produce valid, expected results.

Another advantage of working with the computer system performance domain is it
is easy to collect such data. This was key. Publicly available data sets in a format
where several sequences appear as attribute values for a single data instance where not
found despite this being a natural representation for many domains. This required the

compilation of original data sets. Computer performance was an obvious choice.

49



90 CHAPTER 8. EXPERIMENTAL EVALUATION OF ASAS

For this purpose several performance metrics were captured on a single computer
system. The load on the computer system during performance data collection was the
execution of a machine learning algorithm implemented in Weka. Collection of data
would begin for a single data set instance before a machine learning algorithm would
begin. After the machine learning algorithm had completed, the data collection was
stopped. All the machine learning algorithms had the same basic process of building a
model, training the model over the training data set, and testing the accuracy of the
model over the test data set.

The machine learning algorithms that were used include Neural Networks with Back
Propagation, Instance Based classification, Naive Bayes, and C4.5 Decision Trees. The
training data set used was the census income data available at the UCI Machine Learning
Repository’s website [BM98]. The data used took several forms including normalized
numeric values, discretized numeric values, and nominal attributes. All instances that
included missing values were filtered out.

The experiments with machine learning algorithms were run on a Windows 2000
machine. Metrics were captured at the system level and at the process level. The same
metrics were captured for each process running on the machine. A list of the Windows
2000 performance metrics captured during each experiment can be found in Appendix
C. The descriptions shown were retrieved from Microsoft’s MSDN web site [Cor| and are
also available from the Performance Monitor Utility provided with Windows 2000.

Figure 8.1 shows a partial sample of the sequence data collected from a single exper-
iment. This data along with all the other time sequences not shown comprise a single

instance of the data set. Also see Figure 1.1.

8.1.2 Rules

Shown below is a rule which describes an obvious, general relationship between two

attributes. this rule is illustrated in Figure 8.2.

Idle Process Time Increases [to, t;] = Total Process Time Decreases [tg, 1]
[Conf: 1.0, Sup: 0.94]

The Idle process time is always inversely related to the Total process time. While the
rule is not novel and simply points out a redundancy in the performance data that was
collected, it is a valid rule. It is easy to verify. For this simple case ASAS found a valid
temporal relationship. The algorithm did not know beforehand that the two attributes
were related.



8.1. EVALUATION ON THE COMPUTER PERFORMANCE DOMAIN ol

1o | 400,000,000

W,AM\[M_‘_WW I learning-algorithm =
s | | ]| enemman BackPropagation
- it
1 F00 00k 000 -
- . | I option-I = 8000
e I | i 1 250,000,000
[ _ 1 option-H = 3
28.50 i i I 200,000,000
iu I! 150,000,000 Gptbn_E =0.0112
9800 II I
| |: Lo 008,000 option-M = 0.0445
a7.50 ) 1
. | 50,000,000 .
i 1i e training-data =
avan A4 census-income-normalized-
1 35 F 9111515171920 232527 2931 355 7 941 454547 4951 SS55T 5001 636507627170 SDuﬂ.data
Thme
= =Process{_Total)\% Processor Time —— Process(java)\% Processor Time
WMemoryAvailable Bytes Procass(java)\Working Set

- == Process{_Total)\Working Sat

Figure 8.1: Partial Sample of A Single Performance Data Instance. See Appendix C and
Appendix D for a complete listing.

The behavior described in the next rule, shown below and illustrated in Figure 8.3,
is slightly more complicated and more subtle than the last example. It occurs when the
main computation task, machine learning, is finished executing and memory resources

are returned to the operating system.

Total Memory in Use Decreases [ty, t;] = Total Process Time Decreases [tg, o]
[Conf: 0.97, Sup: 0.85]

As soon as the machine learning task completes CPU utilization drops of course. It
still takes some CPU cycles to handle the memory being released. While this rule cannot
validate the correctness of ASAS and the system it is implemented in, to be able to
obtain such rules was a significant milestone for this thesis.

The rules obtained from this domain were fairly uninteresting and not novel. This is
due to the lack of interesting data collected. Figure 8.4 shows all the sequence attributes
from a sample instance from this domain. The sequences are fairly unchanging. There
seem to be no temporal patterns other than the type shown to be found in this data set.

This is due to the nature of the computation task selected. All the machine learning
algorithms used during data collection followed the same three steps. First, a model
is built. Second, the model is trained until it reaches some fitness criteria. Third, the

model is evaluated over some test data. In the Figure 8.4 you can see where the model



52 CHAPTER 8. EXPERIMENTAL EVALUATION OF ASAS

Idle Process Time Increase [t,, t,] =>
Total Process Time Decrease [t,, t,]
[Conf: 1.0, Sup: 0.94]

Idle Process Time = = =Total Process Time

Value

Time

Figure 8.2: Idle Process Time Increases [ty, t1] = Total Process Time Decreases [ty, t1]

building phase and the training phase end. The sequence for the Java process time shows
a slight decrease at each end point. In this respect and seemingly all other respects, each
machine learning algorithm used looks the same as far as resource use goes. Execution
time did differ a great deal but this information was not usable in ASAS at the time

these experiments were run.

8.1.3 Summary of Results

The evaluation of ASAS over computer system performance data showed ASAS found
the temporal patterns that there were to find in the data set. It provided a link to the
original motivation for this work. It served as an excellent source of readily collectible

data to use for experimentation while developing the algorithm.



8.2. EVALUATION ON THE STOCK MARKET DOMAIN 33

Total Memory in Use Decrease [t,, t,] => Total Process Time Decreases [t;, t,]

[Conf: 0.97, Sup: 0.84]

Total Memory in Use = = =Total Process Time

Value
i’

Time

Figure 8.3: Total Memory in Use Decreases [tg, t1] = Total Process Time Decreases [t,
to]

8.2 Evaluation on The Stock Market Domain

8.2.1 Stock Market Data

A full description of each attribute in these data sets can be found in Appendix E.

The data used consists of ten years worth of closing prices from 7 technology compa-
nies from 1992 to 2002 obtained from Yahoo! Finance [Fin]. Additionally, events such as
new product releases, awards received, negative press releases, and expansions or merg-
ers from each company were obtained from each respective company’s web site. Each
instance in this data set represents a single quarter year. There are 24 instances in the
data set. All 10 years are not represented because information on the additional events
listed above were not available for all years.

Before mining, the sequences of closing prices for a quarter for each company are
filtered for events. For each predefined event and closing price sequence, a new attribute is
created indexing where this event type occurs in the sequence. The closing price sequence

attributes are then removed from the data set. The financial events detected include



04 CHAPTER 8. EXPERIMENTAL EVALUATION OF ASAS

100.00 r! ~ — 400,000,000
w0001 4 | 350,000,000
80.00 IE_-__--__-—_--__-——------__-—_--__-__-__--___—__-__-—_--__--__--_--_-'-]
|| 300,000,000
70.00 | | |
60.00 || | || 250,000,000
s0.00 || | |! 200,000,000
a0.00 || | || 150,000,000
30.00 || |
| | | 100,000,000
20,00
10.00 ~L| 50,000,000
0.00 K I ]
1357 911131517192123252729313335373941434547 4951535557 506163 6567697173
Time
Process(_Total)\% Processor Time —— Process(java)\% Processor Time
—--=-\Memory\% Committed Bytes In Use - —Process(Idle)\% Processor Time
—— Process{System)\% Processor Time Process{SERVICES)\% Processor Time
Process{taskmgr)\% Processor Time Process(make)\% Processor Time
—— Process(realsched)\% Processor Time Process(rnathchk)\% Processor Time
Process(Idle)\Working Set Process(CSR55)\Working Set
Process{SERVICES)\Working Set —— Process(svchost#1)\Working Set
Process(rnathchk)\Working Set === \Memaory\Available Bytes
Process(java)\Working Set — - -Process(_Total)\Working Set

Figure 8.4: Performance Instance. See Appendix C and Appendix D for a complete
listing.

rounded top, selling climax, ascending triangle, broadening top, descending triangle,
double bottom, double top, head & shoulders, inverse head & shoulders, panic reversal,
rounded bottom, triple bottom, triple top, sustain, increase, and decrease [LR91]. See
Appendix E for descriptions and illustrations of these financial events. This data was
compiled by [HLO03].

8.2.2 Rules

This domain provided motivation to examine how ASAS could be used to place the
relative temporal relationships it found in a more specific time period. We accomplished
this by reporting the interval lengths of the events in the rules. When a user runs ASAS
a summary of the minimum and maximum length of each event type is given.

The rules below were obtained by applying AprioriSetsAndSequences to the data set

described in Section 8.2.1. Let us look at a fairly simple rule containing events.



8.2. EVALUATION ON THE STOCK MARKET DOMAIN 55
CSCO
ID AMD Product AMD Stock AMD AMD Trade Vol- | Product
Announcement Awards ume Announce-
t
sun = {Lifetime m?onet
1 {Athlon XP 2200 “] Achieve- m———=—==—— | 1100 Series
[Nov 11, 02]} AT ment [Oct M—LMMM—M L L g [Oct. 2,
,,,,,,,,,,,,,,, 31, 02]} 2002]}
{Athlon XP
Processor:
2 | none 38, 47, 53, 55, ... Product of {52}08400’ 5959300, none
the Year | 7
[Jun 2]}
{1) AMD Duron {2720700, 4875000:
3 1.3GHz [Jan 21]} 18, 20, 16, 12, ... none ) none

Figure 8.5: A sample of a company and stock market dataset containing complex in-
stances. Here, sequential values are represented in a graphical manner only for the first
row to save space.

CSCO Increase [tg,t1] = CSCO Sustain [to,t3]
[Conf: 0.8, Sup: 0.42, Event Weight: 16]

CSCO Increase 6-11 days, CSCO Sustain 6-11 days

This rule reads: The closing stock price of Cisco Systems Inc. increased in value
for 6 to 11 days. With a confidence of 80% the closing price of Cisco will remain fairly
constant for 6 to 11 days sometime after Cisco’s closing price stops increasing. It will
do this during the same quarter year the increase took place. There is no overlap in
time between the two events of this rule. With a support of about 42% this happens in
about 10 of the quarters represented in the data set. In these 10 instances this behavior
is found 16 times as noted by the event weight. Let us look at a rule similar to the one

described above.

NXTL Selling Climax [tg,t1] = NXTL Sustain [to,t3]
[Conf: 0.8, Sup: 0.67, Event Weight: 24|

NXTL Selling Climax 6-12 days, NXTL Sustain 6-12 days

Here the company of interest is Nextel Communications Inc. The relationship between
the events are the same. The support is higher with this rule being found in 16 quarters.
In the 16 instances representing those quarters this rule is found 24 times. This rule and
the previous one are examples of predicting future values in a single sequence. This is

just one form of the rules ASAS can find.



96 CHAPTER 8. EXPERIMENTAL EVALUATION OF ASAS

Diagnostic rules concerned with a single sequence can also be found. Rather than
predicting an event to begin or end after the events in the antecedent, a diagnostic rule
describes an association of events beginning or ending before those in the antecedent.
This includes events in the consequent which occur between or during events in the

antecedent.

INTC Increase [ta,t3] = INTC Selling Climax [t¢,t;]
[Conf: 0.87, Sup: 0.46, Event Weight: 13|

INTC Increase 6-8 days, INTC Selling Climax 6-13 days

Intel Corporation’s closing stock price increases for 6 to 8 days. Before Intel’s stock
price increases it goes through a selling climax that lasts 6 to 13 days during the same
quarter. Let us look at a pair of rules. These have the same events in them but one has

a predictive form and the other has a diagnostic form.

AMD Ascending Triangle [to,t1] & CSCO Expand Merge [t4,t5]
= SUNW Sustain [to,t3]
[Conf: 0.91, Sup: 0.42, Event Weight: 10]

AMD Ascending Triangle [to,t;] & SUNW Sustain [t,t3]
= CSCO Expand Merge [t4,t5]
[Conf: 1.0, Sup: 0.42, Event Weight: 11]

CSCO Expand Merge 1-7 days,
AMD Ascending Triangle 6-30 days, SUNW Sustain 6-13 days

Advanced Micro Devices Inc’s closing stock prices exhibit a pattern known as an
ascending triangle for 6 to 30 days. Sometime after but during the same quarter Sun
Microsystems Inc’s closing stock price remains fairly constant for 6 to 13 days. Sometime
after in the same quarter Cisco goes through a period of expansion or merger for 1 to
7 days. The predictive form of the rule has a 100% confidence. In any quarter in the
data set, every time AMD and Sun exhibit the behaviors described in these rules, Cisco
expands or merges. This rule is illustrated in Figure 8.6.

This example shows rules where events identified in different numeric sequences and
symbolic events are related in time. The temporal relationships affect the confidence of
the rules, even when they have the same events. This example also shows that ASAS

can find diagnostic forms of association rules.



8.2. EVALUATION ON THE STOCK MARKET DOMAIN o7

AMD Ascending Triangle [t,, t,] & SUNW Sustain [t,, t,] => CSCO Expand Merge [t,, t;]

[Conf: 1.0, Sup: 0.42, Event Weight: 11]

m———pAMD Ascending Triangle =————=SUNW Sustain 4 CSCO0 Expand Merge
6 - 30 days |
. 6 - 13 days 1 - 7 days
SUNW
Sustain CSCO

Ascending Triangle Expand Merge

Time

Figure 8.6: AMD Ascending Triangle [ty,t1] and SUNW Sustain [t9,t3] = CSCO Expand
Merge [t4,t5]

AMD Sustain [ty,ts] & INTC Sustain [¢1,t3] = MSFT Sustain [t4,t5]
[Conf: 0.78, Sup: 0.42, Event Weight: 7]

AMD Sustain 6-9 days, INTC Sustain 6-10 days,
MSFT Sustain 6-13 days

AMD’s closing stock price remains fairly constant for 6 to 9 days. During this 6 to
9 days interval Intel Corporation’s closing stock price begins to remain fairly constant.
Intel’s sustain period last for 6 to 10 days. During this 6 to 10 day period AMD’s sustain
ends. Sometime after Intel’s sustain period ends but in the same quarter year, Microsoft
Corporation’s closing stock price remains fairly constant for 6 to 13 days.

Events overlapping in time make the temporal relationships between events more
precise and may make it more interesting. These rules can be found by ASAS in predictive
and diagnostic forms.

An interesting characteristic of some of the rules found in our dataset with overlap-
ping events was that they described the events themselves in terms of other events. A

company’s closing stock price could exhibit a complicated behavior like a selling climax.



o8 CHAPTER 8. EXPERIMENTAL EVALUATION OF ASAS

A portion of this complicated behavior may be similar to a much simpler behavior such
as a sustain in stock closing price. ASAS can find rules that state a sustain event and

selling climax event can overlap in the same sequence as illustrated in the rule below.

AMD Selling Climax [tp,ts] = AMD Sustain [t;,t3]
[Conf: 0.61, Sup: 0.42, Event Weight: 14]

AMD Selling Climax 6-15 days, AMD Sustain 6-9 days
Parts of complicated events can also be found similar.

SUNW Inverse Head & Shoulders [t1,t3] = SUNW Descending Triangle [to,t2]
[Conf: 0.71, Sup: 0.42, Event Weight: 12]

SUNW Inverse Head & Shoulders 6-14 days, SUNW Descending Triangle 6-24 days

Multiple Occurrences of Event Type

The AprioriSetsAndSequences algorithm allows rules to be found containing multiple

occurrences of events with the same type.

CSCO Sustain [tg,t;] = CSCO Sustain [to,t3]
[Conf: 0.81, Sup: 0.54, Event Weight: 38|

CSCO Sustain 6-11 days

(Cisco’s closing stock price remains fairly constant for 6 to 11 days. With a confidence
of 81% we can say that later in the same quarter Cisco’s value will experience another 6
to 11 days period of sustain. It is interesting to compare rules which predict the same
repeating patterns for different companies. Below are rules that exhibit repeating sustain

events for four other companies.
SUNW Sustain [tg,t;] = SUNW Sustain [to,t3]
[Conf: 0.87, Sup: 0.58, Event Weight: 39|

MSEFET Sustain [to,tl] = MSFT Sustain [tz,tg]
[Conf: 0.86, Sup: 0.63, Event Weight: 36|

NXTL Sustain [to,tl] = NXTL Sustain [tz,tg]
[Conf: 0.83, Sup: 0.63, Event Weight: 40]

AMD Sustain [tg,t1] = AMD Sustain [¢o,t3]
[Conf: 0.81, Sup: 0.54, Event Weight: 35]



8.2. EVALUATION ON THE STOCK MARKET DOMAIN 39

Let us compare two rules. In the first an event repeats twice. In the second the same

event repeats three times. These two rules are illustrated in Figure 8.7.
INTC Sustain [to,tl] = INTC Sustain [tg,tg]
[Conf: 0.92, Sup: 0.63, Event Weight: 44|

INTC Sustain [tg,t;] = INTC Sustain [ty,t3] & INTC Sustain [t,t5]
[Conf: 0.71, Sup: 0.42, Event Weight: 34]

INTC Sustain 6-10 days

INTC Sustain [t,, t.] => INTC Sustain [t,, t,]
[Conf:|0.92] Sup: 0.63, Event Weight: 44]

INTC Sustain [t;, t;] & INTC Sustain [t,, t;] => INTL Sustain [t,, t;]
[Conf: Sup: 0.42, Event Weight: 34]

e [NTC SuSEaln =——NTC Sustain === NTC Sustain

6 - 10 days 6 - 10 days 6 - 10 days
INTC INTC INT(;
Sustain Sustain Sustain

Time

Figure 8.7: INTC Sustain [tg,t;] = INTC Sustain [to,t3]

Notice the reduced confidence in predicting Intel’s stock price will undergo a sustain
period twice more in the same quarter. Repeating events also occur in events that were
not obtained from a sequence. The rule below shows a repeating Cisco Expand Merge

event.

CSCO Expand Merge [to,t1] = CSCO Expand Merge [to,t3]
[Conf: 0.9, Sup: 0.46, Event Weight: 36]

CSCO Expand Merge 1-7 days



60 CHAPTER 8. EXPERIMENTAL EVALUATION OF ASAS

Rules with repeating events are not limited to just one type of event. Below is an

example of a rule containing both a singular event and a repeating event.

CSCO Expand Merge [t4,t5] & NXTL Sustain [to,t;] = NXTL Sustain [t9,t5]
[Conf: 0.92, Sup: 0.42, Event Weight: 24|

NXTL Sustain [t9,t3] & NXTL Sustain [t,t;]= CSCO Expand Merge [t4,t5]
[Conf: 0.67, Sup: 0.42, Event Weight: 16]

CSCO Expand Merge 1-7 days, NXTL Sustain 6-12 days

As shown above rules with repeating events can be found in predictive and diagnostic

forms.

8.2.3 Summary of Results

Overall, the rules produced from this domain far exceeded our expectations in confidence.
Obtaining temporal relationships with confidences in the 70, 80, and even 90 percent
ranges from stock market data was not expected. Future work in this domain with a
financial expert would be interesting.

Associations were found that contained many different types of complex temporal
relationships. Association rules where the events in the antecedent occurs before the
events in the consequent could be used for prediction. Rules where the events in the
consequent occur before those in the antecedent could be used in a diagnostic capacity,
to explain observed behavior. Rules were found were the same event type repeats. This
domain also provided data suitable for examining some algorithmic behavior of ASAS.

Those results are presented in Section 8.4.

8.3 Evaluation on The Human Sleep Domain

8.3.1 Clinical Sleep Data

Figure 8.8 shows a small sample of the data used for this set of experiments. The data was
obtained from Laxminarayan [Lax04]. The sequential data was taken every 30 seconds

and each 30 second interval is referred to as an epoch.

A full description of each attribute in these data sets can be found in Appendix F.



8.3. EVALUATION ON THE HUMAN SLEEP DOMAIN 61

ID OSA heart rate age (()yxygen potential G |drugs sleep stage
0
120 /n1 D o | PO P P = o L PO o z:age;
A — : e —
1| severe | % 27 | =& M | PEO | siees
IR 80 N T TSI ﬂO} R;P?IE
120 240 360 1o 240 80
{flo,
2 | moderate | 97, 72, 67,80, ... | 73 | 90,92, 96,89,86,... | F |asp, | S2,82,REM,SI, ...
zol}
3| none 102, 99, 87, 96, ... | 49 | 97, 100, 82, 80, 70 ... | M |{zol} S1,91,93, ...

Figure 8.8: A sample of a dataset containing complex instances. Here, sequential values
are represented in a graphical manner only for the first row to save space. G stands for
Gender with values M (male) and F (female). Si denotes sleep stage i. Medication names
have been abbreviated.

8.3.2 Rules

Laxminarayan’s work required that the rules obtained from mining be able to express
temporal relationships which were associated with specific times during a patient’s night
sleep. Time Granularities as discussed in Section 7.1 was not yet available at the time
of Laxminarayan’s project. Laxminarayan implemented a window based preprocessing
step to create items which contained temporal information. This temporal information
identified where during a patient’s night sleep the item, or windowed event occurred.
(See [Lax04].)

Here we apply ASAS with Time Granularities to human sleep data in hopes of ob-
taining rules similar to those presented in [Lax04]. Although more rules were obtained

only a handful of the most significant rules were selected for inclusion in this document.

The rules below were obtained using a data set containing only the sleep stages 1, 2,
3, 4, and Rapid Eye Movement (REM), and level of Obstructive Sleep Apnea (OSA). A
time granularity of 50 epochs, or 25 minutes is also part of the data set. Only rules that
classify for Obstructive Sleep Apnea (OSA) are shown. Note: Chi-square and Lift values
are available for the rules presented in this section. This is because only the antecedents
contain event items. It is only when event items appear in both the antecedent and
consequent of a rule that these metrics become unavailable.

The rule shown below and illustrated in Figure 8.9 can be read as a patient who
exhibits sleep stage 1 which begins sometime before epoch 700 (minute 350) and ends
sometime between epoch 700 (minute 350) and epoch 749 (minute 374), with a likelihood
of 83%, suffers from mild obstructive sleep apnea. The statistical robustness of this rule

is quite high as shown by the chi-square value.



62 CHAPTER 8. EXPERIMENTAL EVALUATION OF ASAS

Sleep Stage 1

Granularity

Time Line

In 30 second 75 150 700 775 900

Figure 8.9: Sleep Stage 1 [to, t2] and Granule 700-749 [t;, t3] = Mild OSA

Sleep Stage 1 [to, to] & Granule 700-749 [¢1, t3] = Mild OSA
[Conf: 0.83, Sup: 0.063, Lift: 3.51, Chi-S: 12.72, p < 0.001 |

In the illustration (Figure 8.9) a patient’s night sleep is shown as a time line marked
by epoch. The sleep stage event is marked as a bar which is faded at either end. The
time granularity is also shown as a bar but which appears solid from end to end.

The next rule shown below and illustrated in Figure 8.10 can be read as a patient
who exhibits sleep stage 2 which begins between epoch 150 (minute 75) and epoch 199
(minute 99) and ends sometime after epoch 200 (minute 100), with a likelihood of 67%,
suffers from moderately severe obstructive sleep apnea. This rule also seems statistically

robust.

Sleep Stage 2 [t1, t3] & Granule 150-199 [ty, to] = Moderately Severe OSA
[Conf: 0.67, Sup: 0.075, Lift: 2.96, Chi-S: 11.34, p < 0.001]

Sleep Stage 2 -

Granularity

Time Line
In 30 second

Figure 8.10: Sleep Stage 2 [t1, 3] and Granule 150-199 [to, t2] = Moderately Severe OSA

The next rule shown below and illustrated in Figure 8.11 can be read as a patient
who exhibits sleep stage 3 which begins between epoch 300 (minute 150) and epoch 349
(minute 174) and ends after epoch 350 (minute 175), with a likelihood of 70%, do not

suffer from obstructive sleep apnea.

Sleep Stage 3 [t1, t3] & Granule 300-349 [to, 2] = No OSA
[Conf: 0.7, Sup: 0.088, Lift: 1.87, Chi-S: 5.15, p < 0.023]



8.4. PERFORMANCE EVALUATION OF ASAS 63

Sleep Stage 3

Granularity

Time Line
In 30 second

Figure 8.11: Sleep Stage 3 [t1, t3] and Granule 300-349 [to, t2] = No OSA

The last rule shown below and illustrated in Figure 8.12 can be read as a patient who
exhibits Rapid Eye Movement (REM) occurring between epoch 750 (minute 375) and
epoch 799 (minute 399), with a likelihood of 67%, do not suffer from obstructive sleep

apnea.

Sleep Stage REM [t1, to] & Granule 750-799 [to, t3] = No OSA
[Conf: 0.67, Sup: 0.1, Lift: 1.78, Chi-S: 5.12, p < 0.023]

Granularity

Time Line
In 30 second

Figure 8.12: Sleep Stage REM [t1, t5] and Granule 750-799 [to, t3] = No OSA

8.3.3 Summary of Results

This data set and the need expressed in [Lax04] for a system that finds association rules
that contain explicit times motivated the use of time granularity events with ASAS. In
trying to obtain rules similar to those presented by Laxminarayan we show that using
Time Granularities with ASAS is a viable way to mine for association rules expressing
general temporal patterns as well as time specific patterns over multiple granularities
at the same time. The rules found express statistically robust associations which seem

relevant to the study of human sleep.

8.4 Performance Evaluation of ASAS

The machine used to run experiments for the results shown in Section 8.4.1 Time to Mine
had 512 MB of physical RAM and a 600MHz Pentium II CPU.



64 CHAPTER 8. EXPERIMENTAL EVALUATION OF ASAS

The machine used to run experiments for the results shown in Section 8.4.2 Effect of
Increasing Maximum Number of Same Type Events Allowed in a Rule had 512 MB of
physical RAM and a 1.5MHz Pentium IV CPU.

For both sets of experiments the Java virtual machine which ran ASAS was configured
with a limit of 900 MB.

8.4.1 Time to Mine

There are many factors which, at first, might seem to effect the total time the ASAS
mining process will take to finish. Another way of thinking about the performance of
ASAS is the time per frequent item set found. That is, how long, on average, did ASAS
take to find each frequent item set. In this section we look at both total time and time

per frequent item set. We will look at total mining time first.

Total Time to Mine

Figure 8.13 shows the event characteristics of various data sets from the Stock Market
Domain described in Section 8.2.1. These characteristics are plotted according to the
total time spent mining that data set. The x-axis shows the total time in seconds spent
mining along a logarithmic scale. The left hand y-axis has a logarithmic scale and shows
the number of event occurrences in a data set. The right hand y-axis shows the number
of event attributes in a data set and the average number of event occurrences per event
attribute. The results for each of the five experiments run all appear in a single column
in the Figure.

ASAS was run with the minimum confidence set to 60%, the minimum number of
rules to produce was set to 1, and all other user parameters used the default values.
Please see Appendix A for user parameter details. The only difference between the five
experiments are data sets used. In increasing total time to mine order, the data sets used
for are csco-msft-events, news, 1-90-evented, 7-90-evented, and simple-events.

The csco-msft-events data set consists of two companies, Cisco and Microsoft, and
the stock market value events described in Appendix E. The news data set consists of all
seven companies appearing in Section 8.2 and the product release, award, bad news, and
expand merge events. The 1-90-evented data set consists of the single company Cisco and
the stock market value events. The 7-90-evented data set consists of all seven companies
and their stock market value events. The simple-events data set consists of all seven

companies and the increase, decrease and sustain events detected over their stock market



8.4. PERFORMANCE EVALUATION OF ASAS 65

Data Set Events and Total Mining Time

10000 120
m 100 ¢
- -
8 1000 .g E‘E
w E 80 o unw
i= =
E’%?&lom 60 3;.‘5-;;;
1) E ] : 5 e
[ =
# E 40 OF %
S 23S E
0 10 | ol
o 20 ®T
1 0
0.1 1 10 100 1000 10000 100000

total seconds to mine

- W - # of Event Occurrences
—& =Event Occurrences per Event Attribute
—de— 3 of Event Attributes

Figure 8.13: Data Set Events and Total Mining Time

value. All data sets consist of 30 data instances. They only contain event attributes.

The number of event attributes in each data set is given in Figure 8.13.

The number of event attributes is the total number of attributes in a particular data
set that are of the event set type. The number of event attributes dictates the number of
event items created in the first level of candidate generation. The more event attributes,
the more potential work for ASAS to mine frequent item sets.

The total number of event occurrences is the total count of events contained in each
and every instance in a data set. This can be thought of as the number of items which
ASAS must compare candidate item sets to. The more there are, the more potential

work for ASAS to mine frequent item sets.

The average number of event occurrences per event attribute is a view of how dense
the temporal landscape of a data set is. One might expect many frequent item sets to
be found the more events that occurred in a single attribute.

Figure 8.14 shows the number of frequent item sets found during mining. This seems
to be the only measured parameter which has a strong correlation with the total time

ASAS spends mining. The more frequent patterns there are to find in a data set, the



66 CHAPTER 8. EXPERIMENTAL EVALUATION OF ASAS

Frequent Item Sets and Total Mining Time

1000000

100000

10000

1000

100

# frequent item sets

10

0.1 1 10 100 1000 10000 100000
total seconds to mine

= # of Frequent Itemsets Found

Figure 8.14: Frequent Item Sets and Total Mining Time

more time ASAS spends to find them. No other characteristics of the data set seem to
influence the mining time more.

A comparison between Figures 8.13 and 8.14 shed some light on the increase in mining
time between the third and fourth experiments. The number of frequent item sets found
does not increase. Both the number of event attributes and event occurrences in the data
set do increase. While the number of frequent item sets to be found in the data set seems
to be the main determining factor of mining time, the amount of information contained

in a data set still influences the mining time to some degree.

Time to Mine per Frequent Item Set

Another way to consider the time spent mining is the time it takes to mine each frequent
item set. The lower the time per item set, the more efficient the mining process seems.
Figure 8.15 shows the average time line length for each data set and how it relates to
the time spent mining per frequent item set. The interval of time represented by each
instance in a data set does not seem to have an effect on the efficiency of ASAS to mine

frequent item sets.



8.4. PERFORMANCE EVALUATION OF ASAS 67

Data Set Time Line and Mining Time per Frequent Item Set

120 ¢
e
= 100
L]
£
= 80
=
(=]
'5 60
o
s
2
o 40
(=)}
5
9 20
o
D L

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
seconds per itemset

—4—Average Length of Timeline

Figure 8.15: Data Set Time Line and Mining Time per Frequent Item Set

Figure 8.16 shows the same data set characteristics as Figure 8.13 but now arranged

by mining time per frequent item set.

8.4.2 Effect of Increasing Maximum Number of Same Type

Events Allowed in a Rule

The user parameter maximum number of events of the same type allowed in a rule can
have a large influence on the overall run time of ASAS and the efficiency with which
ASAS finds frequent item sets. To examine this effect, a mining task using a data set
containing all the information for all seven companies from the stock market domain
described in Section 8.2.1. Four experiments were run with values of 1, 2, 3, and 4 for
the maximum same type event items allowed in a rule. The only difference between each
mining task is the maximum number of same type events allowed in a rule. The minimum
support value used is 49%.

Figure 8.17 shows the number of association rules found, the number of frequent item

sets found, and the time per frequent item set found. Along the x-axis is the number of



68 CHAPTER 8. EXPERIMENTAL EVALUATION OF ASAS

Data Set Events and Mining Time per Frequent Item Set

10000 120

1] laﬂm

! | ™

8 1000 ‘33‘2
w E 80 anw
E oy = c £t
S99 100 o0 5298
Vew ....u";“‘
# 0 S# 2

= 40 ‘T

5 2T

%] 10 (TR~

¥ :u.ru“’

] 20

1 0

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
seconds per itemset

- M - # of Event Occurrences
—& = Event Occurrences per Event Attribute
—d— 4 of Event Attributes

Figure 8.16: Data Set Events and Mining Time per Frequent Item Set

event of the same type allowed in a rule. Along the left hand y-axis is the seconds spent
per frequent item set and the number of rules found on a logarithmic scale. The right

hand y-axis shows the number of frequent item sets found.

The results from the first experiment in Figure 8.17 is for mining rules with a single
event item of each type allowed. These results appear in the first column of values plotted
in the Figure. There were 35 such rules found. The second experiment shows results for
when the number of event items of the same type allowed in a rule is two. This yielded
51 rules. This is 16 more rules than found in the last experiment. To find this extra 16
rules more candidate item sets were generated. The frequency of those candidates were
then counted in the data set. More frequent item sets were found as shown in the Figure.

The time per item set spent on this process stays the same.

For the third and fourth experiments we see that there are no more additional rules
to be found containing three or four event items of the same type in this data set. ASAS
still must do the work creating candidate item sets and counting support. This work is
done needlessly since no more additional frequent patterns, as represented by association

rules, are present.



8.4. PERFORMANCE EVALUATION OF ASAS 69

Diminishing returns with higher # of same type events
Minimum Support = 49%

1000 | 4 3500
: 3000
o |
TS |
. g € 100 | 2500 5
9 E3 =
ﬂ'u}u- | el
0w 5 2000 = w
T8 10 ga‘.
652 g 1500 g
U = [ Q
2o 5 &
Or g 1000 &
w O |
500
[).1é - 0

# of events of the same type allowed in a rule

- % =Seconds per frequent itemset found
= = Number rules found
—l— Number frequent itemsets found

Figure 8.17: Diminishing Returns With Higher Number of Same Type Events Allowed
In a Rule

Figure 8.18 shows the first three experiments from above but with a lowered support
of 40%. By lowering the support we make it possible to find more frequent patterns in
the data set. This allows another view of the behavior illustrated in Figure 8.17.

We can see that although by lowering support more rules are now found for each
maximum number of event items of the same type allowed in a rule, the work involved
in finding those rules grows at a faster rate. This seems to be caused by the percentage
of new patterns found being lower than the previous set of experiments. In the previous
experiment, between the first and second experiment there was a 46% increase in the
number of rules found. In this experiment the increase was 33%. The less patterns to be

found and the more patterns we look for, the more wasted effort.



70 CHAPTER 8. EXPERIMENTAL EVALUATION OF ASAS

Diminishing returns with higher # of same type events
Minimum Support = 40%

1000 10000
9000
.. E = 100 8000 E
§E3 7000 &
. 6000 &
Be2 10 5000 99
e £ 3 =
oY= 4000
7] # ol
w gL . 3000 =
= ° 2000 ¥
1000
0.1 0
0 1 2 3 4 5

# of events of the same type allowed in a rule

- # =Seconds per frequent itemset found
-4 = Number rules found
-l Number frequent itemsets found

Figure 8.18: Diminishing Returns With Higher Number of Same Type Events Allowed
In a Rule and Lower Support



Chapter 9

Conclusions and Future Work

9.1 Conclusions

In this thesis we introduced an algorithm for mining expressive temporal relationships
from complex data sets in which a single data instance may consist of a combination of
attribute values that are nominal sequences, time series, sets, and traditional relational
values. Our mining algorithm is close in spirit to the two-stage Apriori algorithm. Our
work contributes the the investigation of prune strategies and efficient data structures
to effectively handle the added data complexity and the added expressiveness of the
temporal patterns.

Several alternative methods to Apriori’s item set generation have been proposed in
the literature. Those alternative methods differ from Apriori in their strategy to generate
frequent item sets, or in the item sets that they consider interesting. Some approaches
attempt to increase the performance of the mining algorithm over certain types of data
[ZPOL97]; compute frequent item sets very efficiently [HPY00, XD99, Lin98, Hid98]; or
utilize parallel computing environments [AS96, ZOPL96]. Work by Webb [Web00], Agar-
wal, Aggarwal, and Prasad [AAP00, AAPO1], and Bayardo, Agrawal, and Gunopoulos
[BAGOO0] address some of the efficiency concerns by means of novel and judicious search
techniques for item set generation. Modifications and generalizations of association rules
that are more suitable to certain application domains are investigated by Brin, Motwani,
and Silverstein [BMS98] and by Cohen et al. [CDF*00]. Additional work on using sta-
tistical measures of item set interestingness other than support and lift are investigated
by DuMouchel and Pregibon [DP01] and by Wu, Barbard and Ye [WBY03|.

This work focuses on the necessary extensions of the traditional support and confi-

dence framework to handle the desired complex associations. Zhen, Kohavi, and Mason

71



72 CHAPTER 9. CONCLUSIONS AND FUTURE WORK

[ZKMO1] show experimentally that although some well-known alternative association
rule mining approaches discussed above outperform Apriori over artificial data sets, they
do not over real-world data sets. The work described here provides a foundation for
future investigation and comparison of alternative measures of item set interestingness
and alternative search techniques such as those discussed above but in the context of

complex data.

9.2 Future Work

9.2.1 ASAS Extensions

ASAS could be extended to handle one more temporal concept, the instantaneous event.
It seems to be a simple implementation problem to include this concept. An instanta-
neous event would begin and end at the same time. There would be no need to change
ASAS’s basic representation of events. Local changes to item set matching and candidate

generation would have to be made.

The introduction of Time Granularities to ASAS creates many event items which are
usually frequent. This makes the time to mine much longer. See Section 8.4 to see how
the number of frequent item sets found effects the time to mine. Many rules are produced
that one contain these frequent granularity event items. ASAS should be modified to
treat granularity attributes as a special case. For example, there is no need to generate
rules from an item set containing only granularity event items. In fact those item sets
need not be present in the frequent item set list at all. The work involved is taking care
of all the places in the implementation where those item sets would be expected in the
list.

9.2.2 Improve Candidate Generation

Candidate generation is the part that currently takes the longest during the ASAS mining
process, for the majority of the data sets it has been used with. There are two main
approaches for improving candidate generation described here. The first involves reducing
memory consumption. The second involves more intelligent handling of same type event

items.



9.2. FUTURE WORK 73

Improve Candidate Generation: Memory Consumption

To date memory usage has been recorded in the multiple gigabyte range for data sets
containing many frequent item sets. To make ASAS viable for large database applications
this memory problem must be addressed.

Candidate generation gets very slow when memory is utilized beyond the physical
limit of the machine. To reduce this effect we could try counting support intermittently
during generation to remove candidates found not frequent earlier, freeing memory re-
sources for the rest of the candidate generation phase. This might have to be balanced
with the data set size. If the data set is substantially large enough that a complete scan
of it makes the support counting process very long, counting support during candidate
generation might not be an option. This option could still be implemented with a switch
sensitive to data set size or as a user option.

Another memory reducing strategy might be to take advantage of the fact that only
the item sets suspected of being the first in a succession of conceptually duplicate item
sets (See Section 6.2.7) have to be kept for quick access. The full candidate list could be
cached to a file during candidate generation and until the support counting is done.

Memory might also be saved by reviewing the Item Set class implementation. This
class represents the most numerous object type during execution. Even the smallest
memory savings in this class will be potentially magnified hundreds of thousands of

times.

Improve Candidate Generation: Intelligent Same Type Event Handling

The second approach to improve the speed at which candidates are generated involves
treating the event items of the same type more intelligently. In Section 6.2.6 the reason
why these multiple events are used is said to be so the standard Apriori method of
generating and counting support will work. If the generation part is changed so that
event of the same type are used only if need be, much time could be saved.

Using the same example from Section 6.2.7 we get the result shown in Figure 9.1 for
the level 2 candidates.

Figure 9.2 shows the candidate item sets generated for level 3. The total number of
candidate item sets generated is 45. Let us look at a method that introduces event items
of the same type in an as needed fashion.

Let us assume a maximum of three event items of the same type allowed in a rule.
For level 1 candidates we will only create a single item set for each event type. Although

there are three event items of each type available we will only use the first item of each



74 CHAPTER 9. CONCLUSIONS AND FUTURE WORK

m Level 1 Frequent
1. CPU Increase [t, t,]
2. Disk Increase 1 [t,, t,]/

3. Disk Increase 2 [t,, t,]/

Aaaagﬂﬂﬂlh\ﬁlﬂ-‘.

Figure 9.1: Candidates from Combining Item Sets Level 1

type to create the candidate item sets.

Using an example similar to the one above, when generating candidates for level 1 we
will not include an item set which contains the second Disk Increase event.

To generate the level 2 candidates we simply combine the frequent item sets from
level 1 as we normally would. Now we check if it is time to introduce the second event
item of the same type. We check each frequent item set from the previous level to see
if it contains enough event items of the same type to warrant adding another. For level
1 this means there must be at least one event of the same type in a frequent item set.
This is trivial for level 1. For each frequent item set meeting this criteria we generate
candidates by adding the additional event item of the same type to that frequent item
set. A candidate item set will be generated for each possible temporal relationship the
new event item could have with all the other event items in that item set.

Following along in our example, after the frequencies of the candidate item sets in
level 1 are counted we find item set 1 and 2 are frequent. Figure 9.3 shows the result of
combining item sets 1 and 2 to create candidates for level 2.

Since we know that Disk Increase 1 is frequent we know that Disk Increase 2 must
be frequent. We will combine Disk Increase 2 with all the frequent item sets from level

1 that already contain a Disk Increase event. The level 2 candidates generated in this



9.2. FUTURE WORK 75

m Level 2 Frequent Level 3 - item sets 3 & 37 combined

3. Disk Increase 1 [ty t,] / 1. Disk Increase 1 [t,, t;] & CPU Increase [t,, t.]
CPU Increase [t,, t,] & Disk Increase 2 [t,, t,]

16. Disk Increase 2 [t,, t,] &

CPU Increase [t,, £.] 2. Disk Increase 1 [t,, t;] & CPU Increase [t,, t,]

& Disk Increase 2 [t,, t,]

37. Disk Increase 1 [t,, t,] &

Disk Increase 2 [t,, t.] 3. Disk Increase 1 [t,, t;] & CPU Increase [t,, t,]

& Disk Increase 2 [t,, t.]

45 Ttem Sets Created and Counted

Figure 9.2: Candidates from Combining Item Sets Level 2

manner are shown in Figure 9.4. For simplicity we will not illustrate the second CPU

Increase event.

After counting the candidate frequencies we find that item sets 3 and 24 are frequent.
Note that item sets matching these were found frequent in the previous example. Figure
9.5 shows the candidates resulting from combining these two item sets. The 3 candidates
are the same as the candidates for level 3 in the previous example. We came to this
conclusion by generating and counting frequencies for 31 candidates instead of 45. This
is a savings of 31%.

From here we would apply our criteria test to the frequent item sets of level 2 and
see that item set 24 contains two Disk Increase events. We would then add the third
available Disk Increase event to item set 24 to create candidates that contained three
Disk Increase events. Each level’s candidate generation hereafter would follow the same

procedure.

There are considerations using this method. First, when generating candidates, all
subsets of the candidates are checked to see if they are frequent. If one subset is not
frequent then the candidate item set is known to also not be frequent via the Apriori
principle. This subset check must treat event items of the same type as if they were the

same item. That is, if item A is an event and was counted and found to be frequent



76 CHAPTER 9. CONCLUSIONS AND FUTURE WORK

m Level 1 Frequent Level 2 Candidates

K Disk Increase 1 [t;, t;] & CPU Increase [t,, t,]
1. CPU Increase [t,, t,] 2. Disk Increase 1 [t;, t,] & CPU Increase [t,, t,]
3. Disk Increase 1 [t,, t,] & CPU Increase [t,, t.]
4. Disk Increase 1 [t t,] & CPU Increase [t,, t,]
5. Disk Increase 1 [t,, t,] & CPU Increase [t,, t.]
6. Disk Increase 1 [t,, t,] & CPU Increase [t,, t.]
Disk Increase 2 [t,, t,] 7. Disk Increase 1 [t,, t,] & CPU Increase [t,, t,]
8. Disk Increase 1 [t,, t,] & CPU Increase [t,, t,]
9. Disk Increase 1 [t,, t;] & CPU Increase [t,, t,]
10. Disk Increase 1 [t t,] & CPU Increase [t;, t,]
11. Disk Increase 1 [t,, t.] & CPU Increase [t,, t.]
12. Disk Increase 1 [t,, t,] & CPU Increase [t,, t,]
13. Disk Increase 1 [t,, t,] & CPU Increase [t,, t,]

2. Disk Increase 1 [t,, t,

Figure 9.3: Candidates from Combining Item Sets Level 1a Improved

and item B is an event of the same type and was introduced into the candidates and
not previously counted, it should also be known to be frequent. This can be easily done
by modifying the Item Set Prefix Tree data structure to hold support values instead of
references to actual item sets. The same type of problem occurs during rule generation.
The support values of the antecedent of a rule and the consequent of a rule must be

available during rule generation.

9.2.3 Improve Support Counting

To speed up support counting, a bit array could track if an instance counted toward the
support of any item set. Instances that did not contain any item sets are guaranteed
to not contain any item sets generated in the future and using them during support
counting is a waste of time. They should be removed from the working data set. Keep in
mind that the original total number of item sets should be stored so the support counting
prune discussed in Section 7.3 can still be used.

Furthermore, keeping track of which data set instances contribute towards the support
of an item set would save even more work for the algorithm. If an instance does not count
towards the support of an item set it will not contribute towards the support of a superset

of that item set. We can thus skip comparing that instance to future candidate item sets



9.2. FUTURE WORK 7

Level 2 Candidates

m Level 1 Frequent f
1.

1. CPU Increase [t, t,]

2. Disk Increase 1 [t,, t,

Disk Iincrease 2 [t t,]

Since
Disk Increase 1
is frequent,

Disk Increase 2
must be

Figure 9.4: Candidates from Combining Item Sets Level 1b Improved

generated from those item sets.

9.2.4 System Features

Features not related directly to ASAS have been identified as useful and have been
requested to be in the WPI Weka system. Here are those features which have not been
implemented in the system to date.

Limit level of mining to maximum antecedent size plus maximum consequent size if
both are specified. This would avoid mining for larger item sets which would not be used
during rule generation anyway. If the maximum size of the antecedent is chosen to be 3
and the maximum size of the consequent is chosen to be 1, there is no need to mine for
frequent item sets larger than 4. If there are larger frequent item sets to be found in a
data set the time spent finding them will be wasted since only rule of maximum size 4
will be reported to the user.

Continue mining using cache file of frequent item sets to avoid counting support again
for item sets with known support. Many times it is necessary to rerun a data mining
task with a lower support or slightly modified data. Being able to use the support counts
of frequent item sets from a previous run would save subsequent mining time. It would

also be nice to not worry if the same exact data set is being used. That is, translate the



78 CHAPTER 9. CONCLUSIONS AND FUTURE WORK

m Level 2 Frequent |m Level 3 - item sets 3 & 37 combined

3. Disk Increase 1 [ty t.] & 1. Disk Increase 1 [t,, t;] & CPU Increase [t,, t.]
CPU Increase [t,, t,] & Disk Increase 2 [t,, t,]

24. Disk Increase 1 [t;, t;] & | 2 pisk Increase 1 [t,, t;] & CPU Increase [t,, t,]
Disk Increase 2 [t,, t,] & Disk Inc e 2 [to, ]

3. Disk Increase 1 [t,, t;] & CPU Increase [t,, t,]
& Disk Increase 2 [t,, t:]

31 Item Sets Created and Counted

Compared to 45

Figure 9.5: Candidates from Combining Item Sets Level 2 Improved

specific item numbers from the cache file to the item numbers used in the current data
set. Have to warn user that the instances should be the same and that only the list of
attributes in the data set can be different.

The character ‘=" cannot currently be used in an attribute name. This causes the
value of an event item to be interpreted incorrectly. The value being taken to be the string
following the ‘=". When the conversion from attribute value pair to item representation
is made a map of the attribute number and attribute name should be made so that ASAS

can know where to take the value from.



Bibliography

[AAPOO]

[AAPO1]

[AFS93]

[AIS93]

[A1183]

[Alv03]

[AR00]

Ramesh C. Agarwal, Charu C. Aggarwal, and V.V.V. Prasad. Depth first
generation of long patterns. In Proc. of the Sizth ACM SIGKDD Conference
on Knowledge Discover y and Data Mining, pages 108118, Boston, MA, Aug.
2000. ACM.

Ramesh C. Agarwal, Charu C. Aggarwal, and V. V. V. Prasad. A
tree projection algorithm for generation of frequent item sets.  Jour-
nal of Parallel and Distributed Computing, 61(3):350-371, 2001. cite-

seer.ist.psu.edu/agarwal99tree.html.

R. Agrawal, C. Faloutsos, and A. Swami. Efficient similarity search in se-

quence databases. In Foundations of Data Organization and Algorithms
(FODO) Conference, Evanston, Illinois, Oct. 1993.

R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between
sets of items in large databases. In Proc. of the ACM SIGMOD Conference
on Management of Data, pages 207-216, Washington, D.C., May 1993. ACM.

J.F. Allen. Maintaining knowledge about temporal intervals. Communications
of the ACM, 26(11), 1983.

Sergio A. Alvarez. Chi-squared computation for association rules: Prelimi-
nary results. Technical Report BCCS-03-01, Computer Science Department,
Boston College, July 2003.

Juan M. Ale and Gustavo H. Rossi. An approach to discovering temporal
association rules. In Janice Carroll, Ernesto Damiani, Hisham Haddad, and
David Oppenheim, editors, 2000 ACM Symposium on Applied Computing,
volume 1, pages 294-300, Como, Italy, 2000. ACM.

79



80

[AS94]

[AS95]

[AS96]

[BAGO00]

[BCY5]

[BEGT03]

[BM93]

[BMSO8]

[BSJ96]

[BWJLYS]

BIBLIOGRAPHY

R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In
Proc. of the 20th VLDB Conference, pages 487-499, Santiago, Chile, 1994.

R. Agrawal and R. Srikant. Mining sequential patterns. In International

Conference on Database Engineering, pages 3—14. IEEE, 1995.

R. Agrawal and J. C. Shafer. Parallel mining of association rules. IFEE
Trans. On Knowledge And Data Engineering, 8:962-969, 1996.

Roberto J. Bayardo, Rakesh Agrawal, and Dimitrios Gunopulos. Constraint-
based rule mining in large, dense databases. Data Mining and Knowledge
Discovery, 4(2/3):217-240, July 2000.

D.J. Berndt and J. Clifford. Finding patterns in time series: a dynamic
programming approach. In U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth,
and R. Uthurusamy, editors, Advances in Knowledge Discovery and Data
Mining, pages 229-248. AAAI Press/ MIT Press, 1995.

John Baird, Jay Farmer, Rebecca Gougian, Ken Monterio, and Paul Young.
Motif elicitation and multipoint analysis of gene expression. Undergraduate
Graduation Project (MQP). Worcester Polytechnic Institute, April 2003.

C.L. Blake and C.J. Merz. UCI repository of machine learning databases,
1998. http://www.ics.uci.edu/~mlearn/MLRepository.html.

S. Brin, R. Motwani, and C. Silverstein. Beyond market baskets: Generalizing
association rules to dependence rules. Data Mining and Knowledge Discovery,
2:39-68, 1998.

C. Bettini, X. Sean Wang, and S. Jajodia. Testing complex temporal relation-
ships involving multiple granularities and its application to data mining. In
ACM, editor, Proceedings of the Fifteenth ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, PODS 1996, Montréal,
Canada, June 3-5, 1996, volume 15, pages 68-78, New York, NY 10036,
USA, 1996. ACM Press.

Claudio Bettini, X. Sean Wang, Sushil Jajodia, and Jia-Ling Lin. Discovering
frequent event patterns with multiple granularities in time sequences. I[FEFE
Transactions on Knowledge and Data Engineering, 10(2):222-237, 1998.



BIBLIOGRAPHY 81

[CDF+00]

[Cor|

[CPYY]

[DLM*98]

[DPO1]

[Dun03|

[Fin]

[FLYH99)

[FMOA4]

[Fre04]

Edith Cohen, Mayur Datar, Shinji Fujiwara, Aristides Gionis, Piotr Indyk,
Rajeev Motwani, Jeffrey D. Ullman, and Cheng Yang. Finding interesting

associations without support pruning. In Proc. of Int’l. Conf. on Data Engi-
neering (ICDE2000), pages 489-499, 2000.

Microsoft Corporation. Msdn home page. http://msdn.microsoft.com/.

X. Chen and I. Petrounias. Mining temporal features in association rules.
In J.M. Zytkow and J. Rauch, editors, 3rd European Conference on Princi-
ples and Practice of Knowledge Discovery in Databases (PKDD’99), volume
1704 of Lecture Notes in Artificial Intelligence, pages 295-300, Prague, 1999.
Springer.

Gautam Das, King-Ip Lin, Heikki Mannila, Gopal Renganathan, and
Padhraic Smyth. Rule discovery from time series. In Proc. of the 4th Int.
Conf. on Knowledge Discovery and Data Mining, pages 16-22. ACM, 1998.

W. DuMouchel and D. Pregibon. Empirical bayes screening for multi-item
associations. In Proceedings of the seventh ACM SIGKDD international con-
ference on Knowledge discovery and data mining, pages 67-76. ACM Press,
2001.

Margaret H. Dunham. Data Mining, Introduction and Advanced Topics. Pear-
son Education, Inc., 2003. From the Southern Methodist University, Chapter
7, Web Mining, pp. 195-219, Chapter 9, Temporal Mining, pp. 245-273.

Yahoo! Finance. Yahoo! finance. http://finance.yahoo.com/.

Ling Feng, Hongjun Lu, J. X. Yu, and Jiawei Han. Mining inter-transaction
associations with templates. In Proceedings of the 1999 ACM CIKM Interna-
tional Conference on Information and Knowledge Management, Kansas City,
Missouri, USA, November 2-6, 1999, pages 225-233. ACM, 1999.

M. Ranganathan Faloutsos and Y. Manolopoulos. Fast subsequence matching
in time-series databases. In Proc. ACM SIGMOD, pages 419-429, Minneapo-
lis, MN, May 1994.

Jonathan Freyberger. Using association rules to guide a search for best fitting
transfer models of student learning. Master’s thesis, Department of Computer

Science, Worcester Polytechnic Institute, April 2004.



82

[FW00]

[Hal00]

[Hid98]

[HKO1]

[HLO3]

[HPY00]

[Lai93]

[Lax04]

[LFHOO]

[Lin98]

[LR91]

BIBLIOGRAPHY

E. Frank and I. H. Witten. Data Mining. Morgan Kaufmann Publishers,
2000. From the University of Waikato, New Zealand.

Tara Halwes. Transform-based similarity methods for sequence mining. Un-
dergraduate Graduation Project (MQP). Worcester Polytechnic Institute,
Aug. 2000. Winner, Provost’s MQP Award for Computer Science.

C. Hidber. Online association rule mining. Technical Report CSD-98-1004,
Dept. of Electrical Engineering and Computer Science, Univ. of California at
Berkeley, May 1998.

J. Han and M. Kamber. Data Mining: Concepts and Techniques. Morgan
Kaufmann, 2001.

Sam Holmes and Cindy Leung. Exploring temporal associations in the stock
market. Undergraduate Graduation Project (MQP). Worcester Polytechnic
Institute, April 2003.

J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate
generation. In Proc. Int’l. Conf. of Management of Data (SIGMOD2000),
pages 1-12, May 2000.

P. Laird. Identifying and using patterns in sequential data. In Klaus P. Jantke,
Shigenobu Kobayashi, Etsuji Tomita, and Takashi Yokomori, editors, Pro-
ceedings of The 4th International Workshop on Algorithmic Learning Theory,
ALT °98, Tokyo, Japan, November 8-10, 1993, Lecture Notes in Computer
Science, pages 1-18, Tokyo, Japan, 1993. Springer.

Parameshvyas Laxminarayan. Exploratory analysis of human sleep data. Mas-
ter’s thesis, Department of Computer Science, Worcester Polytechnic Insti-
tute, January 2004.

Hongjun Lu, Ling Feng, and Jiawei Han. Beyond intratransaction association
analysis: mining multidimensional intertransaction association rules. ACM
Transactions on Information Systems (TOIS), 18(4):423-454, 2000.

D-I Lin. Fast Algorithms for Discovering the Mazimum Frequent Set. PhD
thesis, Dept. of Computer Science. New York University, 1998.

Jeffrey Little and Lucien Rhodes. Understanding Wall Street. Liberty Hall
Press and McGraw-Hill Trade, 3rd edition, 1991.



BIBLIOGRAPHY 83

[LWJ00]

[MT96]

[MTV95]

[0SGC95)

[RMS98]

[RR99]

[RS01]

Yingjiu Li, X. Sean Wang, and Sushil Jajodia. Discovering temporal patterns
in multiple granularities. In J. F. Roddick and K. Hornsby, editors, Inter-
national Workshop on Temporal, Spatial and Spatio-Temporal Data Mining,
TSDM2000, volume 2007 of Lecture Notes in Artificial Intelligence, Lyon,
France, 2000. Springer.

H. Mannila and H. Toivonen. Discovering generalized episodes using minimal
occurrences. In Proc. of the Second International Conference on Knowledge
Discovery and Data Mining (KDD’96), pages 146-151, Portland, Oregon,
August 1996. AAAI Press.

H. Mannila, H. Toivonen, and A. I. Verkamo. Discovering Frequent Episodes
in Sequences. In U. M. Fayyad and R. Uthurusamy, editors, Proceedings of
the First International Conference on Knowledge Discovery and Data Mining
(KDD-95), Montreal, Canada, 1995. AAAI Press.

Tim Oates, Matthew D. Schmill, Dawn E. Gregory, and Paul R. Cohen.
Detecting complex dependencies in categorical data. Technical Report UM-
CS-1994-081, University of Massachusetts, Amherst, MA, , 1995. cite-
seer.nj.nec.com/oates94detecting.html.

Sridhar Ramaswamy, Sameer Mahajan, and Abraham Silberschatz. On the
discovery of interesting patterns in association rules. In Ashish Gupta, Oded
Shmueli, and Jennifer Widom, editors, VLDB’98, Proceedings of 24rd Inter-
national Conference on Very Large Data Bases, August 24-27, 1998, New
York City, New York, USA, pages 368-379. Morgan Kaufmann, 1998.

C.P. Rainsford and John F. Roddick. Adding temporal semantics to associ-
ation rules. In J.M. Zytkow and J. Rauch, editors, 3rd European Conference
on Principles and Practice of Knowledge Discovery in Databases (PKDD’99),
volume 1704 of Lecture Notes in Artificial Intelligence, pages 504-509, Prague,
1999. Springer.

John F. Roddick and M. Spiliopoulou. A survey of temporal knowledge dis-
covery paradigms and methods. IEEE Transactions on Knowledge and Data

Engineering, 13, 2001.



84

[RS02]

[SA6]

[Sho01]

[SRO3]

[SS02]

[TLHF03]

[WBYO03]

[Web00]

[XD99)

BIBLIOGRAPHY

J.F. Roddick and M. Spiliopoulou. A survey of temporal knowledge discov-
ery paradigms and methods. IEEE Transactions on Knowledge and Data
Engineering, 14(4):750-767, 2002.

R. Srikant and R Agrawal. Mining sequential patterns: Generalizations and
performance improvements. In Proc. of the Fifth Int’l Conference on Extend-
ing Database Technology (EDBT), Avignon, France, March 1996.

C.A. Shoemaker. Mining association rules from set-valued data. Master’s
thesis, Department of Computer Science, Worcester Polytechnic Institute,
May 2001.

C. Shoemaker and C. Ruiz. Association rule mining algorithms for set-valued
data. In J. Liu, Y. Cheung, and H. Yin, editors, Proc. of the Fourth Inter-
national Conference on Intelligent Data Engineering and Automated Learn-
ing, pages 669—676. Lecture Notes in Computer Science. Vol. 2690. Springer-
Verlag, June 2003.

Zachary Stoecker-Sylvia. Merging the association rule mining modules of the
weka and arminer data mining systems. Undergraduate Graduation Project
(MQP). Worcester Polytechnic Institute, April 2002.

Anthony K.H. Tung, Hongjun Lu, Jiawei Han, and Ling Feng. Efficient mining
of intertransaction association rules. IEEFE Transactions On Knowledge And
Data Engineering, 15(1):43-56, January /February 2003.

Xintao Wu, Daniel Barbara, and Yong Ye. Screening and interpreting multi-
item associations based on log-linear modeling. In Proceedings of the ninth
ACM SIGKDD international conference on Knowledge discovery and data
mining, pages 276-285. ACM Press, 2003.

Geoffrey 1. Webb. Efficient search for association rules. In Proc. of the Sizth
ACM SIGKDD Conference on Knowledge Discover y and Data Mining, pages
99-107, Boston, MA, Aug. 2000. ACM.

Yongqgiao Xiao and Margaret H. Dunham. Considering main memory in min-
ing association rules. In Proceedings of the First International Conference
on Data Warehousing and Knowledge Discovery, pages 209-218, November
1999.



BIBLIOGRAPHY 85

[Zak00]

[ZKMO1]

[ZOPLY6]

[ZPOL97]

M. Zaki. Sequence mining in categorical domains: Incorporating con-
straints. In Proc. Int. Conference on Information and Knowledge Manage-
ment (CIKM), pages 422-429. ACM, 2000.

Z. Zheng, R. Kohavi, and L. Mason. Real world performance of association
rule algorithms. In Proceedings of the Seventh ACM-SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2001.

M. J. Zaki, M. Ogihara, S. Parthasarathy, and W. Li. Parallel data min-
ing for association rules on shared-memory multi-processors. In CD-ROM
Proceedings of Supercomputing’96, Pittsburgh, PA, November 1996. IEEE.

M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li. New algorithms for fast
discovery of association rules. In David Heckerman, Heikki Mannila, Daryl
Pregibon, and Ramasamy Uthurusamy, editors, Proceedings of the Third In-
ternational Conference on Knowledge Discovery and Data Mining (KDD-97),
page 283. AAAI Press, 1997.



Appendix A

Appendix Readme File

1. Running Weka
1.1 Adding to the Weka GUI
1.2 Using the GUI
1.3 Using the Command Line
2. Data Sets Containing Time Sequence Attributes
2.1 Time Sequence Attributes
2.2 Filtering Events
2.3 Event Weight
2.4 Tips and Tricks

3. Detailed Documentation

86



87

1.1 Adding to the Weka GUI

To include a new classifier, filter, association algorithm, etc in
the Weka GUI follow these steps.

1. If there is not a GenericObjectEditor.props file in the same
directory as this Readme.txt file copy the one found in
weka/gui/.

2. To this file add lines to the appropriate section. An example
of such lines can be found in the
AddToGenericObjectEditor.props file also located in the same
directory as this Readme.txt file.

3. If you are adding the WPI Weka add on package to Weka please
add the lines found in AddToGenericObjectEditor.props to the

specified sections in the GenericObjectEditor.props file you
copied to this directory.

To run Weka use the following command line from the directory containing
this Readme.txt file:

java -classpath . weka/gui/GUIChooser
If you run into "out of memory" problems use the -Xmx flag as follows:
java -Xmx1024m -classpath . weka/gui/GUIChooser

The previous line allocates 1024 MB of memory to the java virtual
machine. Choose the amount that works best for you.

To use the AprioriSetsAndSequences algorithm first select the Weka
Explorer interface from the GUI Chooser window.

Under the Preprocess tab in the Explorer interface select "Open File"
and browse to the data set you wish to use.

Note: it is possible to use other data sources besides a file
but I haven’t used them so you’d be on your own.



88

APPENDIX A. APPENDIX README FILE

Switch to the Associate tab and click on the Associator algorithm
shown. This will pop a window up showing the current algorithm and
user specified parameters.

Choose AprioriSetsAndSequences from the drop down list.
By clicking the "More" button or hovering the mouse pointer
over each parameter you can get an explanation for each option.

Press "Start" and the system will begin mining for association
rules. In the command line window you started Weka in you’ll see
status and messages about the mining progress.

You can also run AprioriSetsAndSequences directly from the command
line. An example is shown below:

java -Xmx1024m -classpath . wpi/associations/AprioriSetsAndSequences
-t perfdata-with-increase-decrease-events.arff

The full list of command line options is below. You can get a list
of these options by simply running AprioriSetsAndSequences with no
arguments.

AprioriSetsAndSequences options:

-t <training file>
The name of the training file.
-N <required number of rules output>
The required number of rules. (default = 10)
-C <minimum confidence score of a rule>
The minimum confidence of a rule. (default = 0.9)
-D <delta for minimum support>
The delta by which the minimum support is decreased in
each iteration. (default = 0.05)
-U <upper bound for minimum support>

The upper bound for the minimum support. (default = 1.0)
-M <lower bound for minimum support>
The lower bound for the minimum support. (default = 0.1)

-A <range of required antecedent attributes>
The set of attributes required to be in the antecedent.



89

-Y <range of required consequent attributes>

The set of attributes required to be in the consequent.
-B <maximum antecedent items>

The maximum number of attributes in the antecedent. (0
-E <minimum antecedent items>

The minimum number of attributes in the antecedent. (0
-W <maximum events of same type allowed in a rule>

The maximum number of event items of the same type allowed in

a rule. (default = 2)
-X <maximum consequent items>

The maximum number of attributes in the consequent. (0 = no maximum)
-Z <minimum consequent items>

The minimum number of attributes in the consequent. (0 = no minimum)
-F <cache file name>

The file from which to load frequent item sets from

no maximum)

no minimum)

This Section includes useful information for using building and using
data sets containing time sequence attributes.

Please Note:

AprioriSetsAndSequences will run with normal data sets and data sets
containing time sequence events.

It will NOT handle data sets that contain numeric attributes.

It will NOT recognize an event attribute if the attribute name
contains a "=".

In the arff file format Weka uses declare a time sequence attribute
as follows:

Q@attribute ’my-time-sequence-attribute’ string

Note: "=" can NOT be used in the attribute name.



90

APPENDIX A. APPENDIX README FILE

Each value in a sequence is separated by colons ":". An example
value of a time sequence attribute is shown below:

0:1:2:3:4:5:6:7:8:9

The values should be numeric in most cases.

While it is possible to have symbolic sequences the current system
provides filters that recognize events for numeric sequences only.
If you wish to use data consisting of symbolic sequences you must

also provide the events or filters that recognize symbolic events.

You must transform time sequences into Events in order to use the
AprioriSetsAndSequences algorithm. More information on Events
can be found in the next section.

Provided in the wpi package that currently accompanies the
weka package are the various utilities and functionality
needed to work with time sequences.

This includes a set of filters that can be applied to data sets
containing numeric time sequence attributes. These filters detect
events (Increase, Decrease, and Sustain) which are simply
predetermined sequence patterns.

A new attribute is created for each event type and time sequence
attribute.

A time sequence event attribute is declared in arff as follows:
Qattribute ’my-time-sequence-attribute-my-events’ string
The begin time and end time of each event is noted,
separated by a colon ":" and put into a set. Each event in the set
is separated by a caret """. An example follows:
’{1:374:6°7:8}’
The event attribute value above contains three events of the

"my-events" type. The events begin and end at time 1 and 3, 4 and
6, and 7 and 8, respectively.



91

This EventFilter is available from the Weka GUI and can be used
like any other Weka filter. Open the data file you wish to filter
in the Weka GUI, select the EventFilter from the filter drop down
list, specify the options you want to use and Add the filter to
list of filters Weka will apply to the dataset. Press "Apply
Filters".

To apply a filter to your data set using the command line:

java -classpath . wpi/filters/EventFilter -i perfdata.arff
-0 perfdata-increase-decrease-events.arff -I -D

The above command specifies the input file as perfdata.arff and the
output file as perfdata-increase-decrease-events.arff. -I and -D

specify the events to search for. A complete list of options are below.

Filter options:

-A <value>
Specify the attributes to find events in.
-I
Find increase events.
-D
Find decrease events.
-S

Find sustain events.
-T <value>
Specifies the tolerance for including values in events.
-N <value>
Specifies the minimum required number of values in events.

General options:

-h

Get help on available options.

(use -b -h for help on batch mode.)
-i <file>

The name of the file containing input instances.

If not supplied then instances will be read from stdin.
-0 <file>

The name of the file output instances will be written to.

If not supplied then instances will be written to stdout.
-c <class index>



92

APPENDIX A. APPENDIX README FILE

The number of the attribute to use as the class.
"first" and "last" are also valid entries.
If not supplied then no class is assigned.

If your time sequence attributes are not numeric or the existing
types of events does not fit your needs you can create your own
filters or provide just the event attributes the data set you use
with Weka. If you provide your own filter you can add it to the
Weka GUI by modifying the GenericObjectEditor.props file contained
in the same directory as this Readme.txt file. Also add your entry
to the AddToGenericObjectEditor.props file to make upgrading to new
Weka versions easier.

In addition to support and confidence a new rule metric has been
added. Event weight is the number of times all the events in a rule
appear in the data set. This can be more the number of instances in
the data set. If both the antecedent and the consequent of the rule
have events then the event weight is used to calculate confidence.

-Remove sequences from data set before mining for association
rules.

Since the events are used for the actual mining process and
there is very little chance of entire sequences being used in a
rule it saves a lot of mining time to simply remove the
sequences from the data set before mining.

-The events you use are very specific to your domain.

If the events you use have no meaning in your data set’s domain
then the rules will have just as much meaning.



93

Detailed documentation on all the WPI Weka code can be found
in the docs directory.

This Readme.txt file brought to you by Keith A. Pray. Feel free to
send questions to kap@wpi.edu if you encounter any problems running
AprioriSetsAndSequences or find this Readme.txt file lacking.

Good 1luck,
Keith



Appendix B

Appendix ASAS Log Metrics

AVERAGE LENGTH OF TIMELINE Average length of a time line in the data

set
CONFIDENCE Confidence metric.
MAX EVENT LENGTH Maximum length of the events.
MAX PER EVENT LENGTH Maximum length per event.
MIN EVENT LENGTH Minimum length of the events.
MIN PER EVENT LENGTH Minimum length per event.
NUM ATTRIBUTES Number of attributes present in the data set

NUM CANDIDATES GENERATED Number of candidate item sets of size k gen-

erated

NUM COMPARISONS SAVED... REMOVING CANDIDATES DURING SUPPORT
COUNTING - Number of times a candidate item sets did not have to be compared

to instances in the data set because the candidate was removed from the candidate

94



95

list when it was clear it could not be considered frequent due to the number of

instances the candidate was already compared to

NUM EVENT ATTRIBUTES Number of event attributes present in the data set

NUM EVENT OCCURRENCES Number of times events occur in the data set

NUM EVENTS OF SAME TYPE ALLOWED Number of event items of the same

type allowed to appear in a rule

NUM FREQUENT ITEMSETS FOUND Number of frequent item sets of size k

found

NUM INSTANCES Number of instances in the data set

NUM OCCURRENCES PER ATTRIBUTE Average number of event occurrences

per event attribute

NUM RULES Number of association rules found.

NUM UNIQUE CANDIDATES GENERATED Number of unique item sets can-

didates of size k generated

NUM UNIQUE FREQUENT ITEMSETS FOUND Number of frequent unique

item sets of size k found

RELATION NAME Relation name of the data set.

SECONDS PER FREQUENT ITEMSET Total mining seconds per frequent item

set found.

SECONDS TO COUNT SUPPORT Number of seconds to count support of candi-

date item sets of size k



96 APPENDIX B. APPENDIX ASAS LOG METRICS

SECONDS TO FIND CONFIDENCE Number of seconds to calculate find confi-

dence of association rules.

SECONDS TO GENERATE CANDIDATES Number of seconds to generate can-

didates item sets of size k

SECONDS TO GENERATE RULES Number of seconds to generate association

rules from frequent item sets
SUPPORT Support metric.
TIMESTAMP Date and time when the mining started.
TOTAL NUM FREQUENT ITEMSETS Total number of frequent item set found

TOTAL SECONDS TO MINE Number of seconds for the entire frequent item set
mining
USE ITEMSET PREFIX TREE Specifies if item set prefix tree used instead of vec-

tor.

USE PREVIOUS DUPLICATE HASH Specifies if previous duplicate hash used.



Appendix C

Appendix Computer Performance

Metrics

Memory % Committed Bytes In Use shows the ratio of Memory Committed Bytes
to the Memory Commit Limit. Committed memory is physical memory in use for
which space has been reserved in the paging file so that it can be written to disk.
The commit limit is determined by the size of the paging file. If the paging file is

enlarged, the commit limit increases, and the ratio is reduced.

Memory Available Bytes Shows the amount of physical memory, in bytes, available
to processes running on the computer. It is calculated by summing the amount
of space on the zeroed, free, and standby memory lists. Free memory is ready for
use; zeroed memory consists of pages of memory filled with zeros to prevent later
processes from seeing data used by a previous process; standby memory is memory
that has been removed from a process’s working set (its physical memory) en route

to disk but is still available to be recalled.

PhysicalDisk Current Disk Queue Length Shows the number of requests that are

outstanding on the disk at the time that the performance data is collected. It

97



98 APPENDIX C. APPENDIX COMPUTER PERFORMANCE METRICS

includes requests in service at the time of the collection. This is a snapshot, not
an average over the time interval. It includes requests in service at the time of the
collection. Multispindle disk devices can have multiple requests active at one time,
but other concurrent requests are awaiting service. This counter might reflect a
transitory high or low queue length, but if there is a sustained load on the disk drive,
it is likely that this is consistently high. Requests experience delays proportional to
the length of this queue minus the number of spindles on the disks. This difference

should average less than two.

This seems to be not the metric I meant to capture. The data collection experiments

will have to be re-run to get better disk information.

Process % Processor Time Shows the percentage of elapsed time that all of the
threads of this process used the processor to execute instructions. An instruction
is the basic unit of execution in a computer; a thread is the object that executes
instructions; and a process is the object created when a program is run. Code
executed to handle some hardware interrupts and trap conditions are included in

this count.

Process Working Set Shows the current number of bytes in the working set of this
process. The working set is the set of memory pages touched recently by the threads
in the process. If free memory in the computer is above a certain threshold, pages
are left in the working set of a process even if they are not in use. When free
memory falls below a certain threshold, pages are trimmed from working sets. If
they are needed, they are then soft-faulted back into the working set before they

leave main memory.

Processor Total % Processor Time Shows the percentage of time that the processor
is executing application or operating system processes other than Idle. This counter

is a primary indicator of processor activity. It is calculated by measuring the time



99

that the processor spends executing the thread of the Idle process in each sample
interval, and subtracting that value from 100%. Each processor has an Idle thread

which consumes cycles when no other threads are ready to run.
System Processes Total number of processes currently running.

System Threads Total number of threads currently running.



Appendix D

Appendix Computer Performance

Data

Descriptions of the attributes of the data set used for ASAS evaluation over computer
system performance data are given here. Some attributes describe the processes running
on the machine the data was collected from. For each description of these attributes
there are actually an attribute of that type for each process. These attribute types are
noted with a *’ where the process name would appear. The list of processes is as follows:
agntsrve, Avsynmgr, bash, bash#1, bash#2, CMD, CMD+#1, CSRSS, dbsnmp, explorer,
explorer#1, Idle, java, LSASS, make, mgabg, MsPMSPSv, mstask, net, netl, ntpd,
nutsrv4, pdesk, realsched, regsvc, rnathchk, scrnsave.scr, SERVICES, sleep, smlogsvc,
SMSS, spoolsv, svchost, svchost#1, svchost#2, svchost#3, System, taskmgr, _Total,

wcescomm, WINLOGON, WinMgmt.

For descriptions of the Windows Performance Monitor Metrics please see Appendix

option-M Data type: Nominal. Possible values: { (-inf-3.00009, 3.00009-6.00008, 6.00008-

inf } Discretized value of the M option for neural networks back propagation.

100



101

option-I Data type: Nominal. Possible values: { All } Discretized value of the I option

for neural networks back propagation.

option-H Data type: Nominal. Possible values: { All } Discretized value of the H

option for neural networks back propagation.

option-E Data type: Nominal. Possible values: { All } Discretized value of the E option

for neural networks back propagation.

option-U Data type: Nominal. Possible values: { -U, none } The U option flag for

decision trees.

option-R Data type: Nominal. Possible values: { -R } The R option flag for decision

trees.

option-S Data type: Nominal. Possible values: { -S } The S option flag for decision

trees.

training-data Data type: Nominal. Possible values: { census-income.data, census-
income-normalized.data, census-income-discretized.data, census-income-normalized-
discretized.data, nomissing-census-income.data, dcensus-income-normalized-5000.data

} The data set file used as input for the machine learning task.

learning-algorithm Data type: Nominal. Possible values: { weka.classifiers.j48.J48,
IBk, weka.classifiers.NaiveBayes, NaiveBayesSimple, BackPropagation } The ma-

chine learning algorithm used for the machine learning task.

Process(*)% Processor Time-increase-events Data type: Event Set. Specifies where

in the Process % Processor Time sequence increase events have been detected.

Process(*)% Processor Time-decrease-events Data type: Event Set. Specifies where

in the Process % Processor Time sequence decrease events have been detected.



102 APPENDIX D. APPENDIX COMPUTER PERFORMANCE DATA

Process(*)% Processor Time-sustain-events Data type: Event Set. Specifies where

in the Process % Processor Time sequence sustain events have been detected.

Process(*)Working Set-increase-events Data type: Event Set. Specifies where in

the Process Working Set sequence increase events have been detected.

Process(*)Working Set-decrease-events Data type: Event Set. Specifies where in

the Process Working Set sequence decrease events have been detected.

Process(*)Working Set-sustain-events Data type: Event Set. Specifies where in

the Process Working Set sequence sustain events have been detected.

Memory% Committed Bytes In Use-increase-events Data type: Event Set. Spec-
ifies where in the Memory % Committed Bytes In Use sequence increase events have

been detected.

Memory% Committed Bytes In Use-decrease-events Data type: Event Set. Spec-
ifies where in the Memory % Committed Bytes In Use sequence decrease events have

been detected.

Memory% Committed Bytes In Use-sustain-events Data type: Event Set. Spec-
ifies where in the Memory % Committed Bytes In Use sequence sustain events have

been detected.

MemoryAvailable Bytes-increase-events Data type: Event Set. Specifies where in

the Memory Available Bytes sequence increase events have been detected.

MemoryAvailable Bytes-decrease-events Data type: Event Set. Specifies where in

the Memory Available Bytes sequence decrease events have been detected.

MemoryAvailable Bytes-sustain-events Data type: Event Set. Specifies where in

the Memory Available Bytes sequence sustain events have been detected.



103

PhysicalDisk(0 C )Current Disk Queue Length-increase-events Data type: Event
Set. Specifies where in the Physical Disk(0 C ) Current Disk Queue Length sequence

increase events have been detected.

PhysicalDisk(0 C )Current Disk Queue Length-decrease-events Data type: Event
Set. Specifies where in the Physical Disk(0 C ) Current Disk Queue Length sequence

decrease events have been detected.

PhysicalDisk(0 C )Current Disk Queue Length-sustain-events Data type: Event
Set. Specifies where in the Physical Disk(0 C ) Current Disk Queue Length sequence

sustain events have been detected.

PhysicalDisk(_Total)Current Disk Queue Length-increase-events Data type: Event
Set. Specifies where in the Physical Disk(_Total) Current Disk Queue Length se-

quence increase events have been detected.

PhysicalDisk(_Total)Current Disk Queue Length-decrease-events Data type: Event
Set. Specifies where in the Physical Disk(_Total) Current Disk Queue Length se-

quence decrease events have been detected.

PhysicalDisk(_Total)Current Disk Queue Length-sustain-events Data type: Event
Set. Specifies where in the Physical Disk(_Total) Current Disk Queue Length se-

quence sustain events have been detected.

Processor(_Total)% Processor Time-increase-events Data type: Event Set. Spec-
ifies where in the Processor (_Total) % Processor Time sequence increase events

have been detected.

Processor(_Total)% Processor Time-decrease-events Data type: Event Set. Spec-
ifies where in the Processor (_Total) % Processor Time sequence decrease events

have been detected.



104 APPENDIX D. APPENDIX COMPUTER PERFORMANCE DATA

Processor(_Total)% Processor Time-sustain-events Data type: Event Set. Speci-
fies where in the Processor (_Total) % Processor Time sequence sustain events have

been detected.

SystemProcesses-increase-events Data type: Event Set. Specifies where in the Sys-

tem Processes sequence increase events have been detected.

SystemProcesses-decrease-events Data type: Event Set. Specifies where in the Sys-

tem Processes sequence decrease events have been detected.

SystemProcesses-sustain-events Data type: Event Set. Specifies where in the Sys-

tem Processes sequence sustain events have been detected.

SystemThreads-increase-events Data type: Event Set. Specifies where in the System

Threads sequence increase events have been detected.

SystemThreads-decrease-events Data type: Event Set. Specifies where in the Sys-

tem Threads sequence decrease events have been detected.

SystemThreads-sustain-events Data type: Event Set. Specifies where in the System

Threads sequence sustain events have been detected.



Appendix E

Appendix Stock Market Data

Descriptions of the attributes of the data set used for ASAS evaluation over company
financial and stock market data are given here. These attributes describe companies
stock market values over time as well as other interesting events. For each description of
these attributes there are actually an attribute of that type for each company in the data
set. These attributes are noted with a *’ where the company name would appear. The
list of companies is as follows: AMD, Cisco (CSCO), Intel (INTL), Microsoft (MSFT),
Nextel (NXTL), Oracle (ORCL), SUN Microsystems (SUNW).

*

product release Data type: Event Set. Specifies when company announces a new

product.

*

award Data type: Event Set. Specifies when company announces it has won an award.

*

bad news Data type: Event Set. Specifies when the company has bad news.

*

expand merge Data type: Event Set. Specifies when the company undergoes an

expansion or merger.

*

rounded top.tpl Data type: Event Set. Specifies when a rounded top event, shown

in Figure E.1, was detected in the company’s stock value.

105



106 APPENDIX E. APPENDIX STOCK MARKET DATA

Rounded Top

N
7

Figure E.1: Rounded Top

* selling climax.tpl Data type: Event Set. Specifies when a selling climax event,

shown in Figure E.2, was detected in the company’s stock value.

Selling Climax

/
N

Figure E.2: Selling Climax
* asc triangle.tpl Data type: Event Set. Specifies when a ascending triangle event,
shown in Figure E.3, was detected in the company’s stock value.

* broadening top.tpl Data type: Event Set. Specifies when a broadening top event,

shown in Figure E.4, was detected in the company’s stock value.

* desc triangle.tpl Data type: Event Set. Specifies when a descending triangle event,

shown in Figure E.5, was detected in the company’s stock value.

* double bottom.tpl Data type: Event Set. Specifies when a double bottom event,

shown in Figure E.6, was detected in the company’s stock value.



107

Ascending Triangle
\ /
\ y4
\ A o4
\ / \ /
s\ ]/ N\ /
s \ / N\_/
\__/
\_/
\ /
\/
Time

Figure E.3: Ascending Triangle

Broadening Top

Value
N~
L]

Time

Figure E.4: Broadening Top

* double top.tpl Data type: Event Set. Specifies when a double top event, shown in

Figure E.7, was detected in the company’s stock value.

* hs.tpl Data type: Event Set. Specifies when a head and shoulders event, shown in

Figure E.8, was detected in the company’s stock value.

* inverse hs.tpl Data type: Event Set. Specifies when a inverse head and shoulders

event, shown in Figure E.9, was detected in the company’s stock value.

* panic rev.tpl Data type: Event Set. Specifies when a panic reversal event, shown in

Figure E.10, was detected in the company’s stock value.

* rounded bottom.tpl Data type: Event Set. Specifies when a rounded bottom event,

shown in Figure E.11, was detected in the company’s stock value.



APPENDIX E. APPENDIX STOCK MARKET DATA

108
Descending Triangle
/\
/ \
/ \
/ \ ~
g / \ / \
S \_/ \
/ \N/ N\
I \¥ 4 S \
/ AN
1 T_ N

Figure E.5: Descending Triangle

Double Bottom

7
N

5 10 15 20 25 30 3|5
Time

Figure E.6: Double Bottom

* triple bottom.tpl Data type: Event Set. Specifies when a triple bottom event, shown

in Figure E.12, was detected in the company’s stock value.

* triple top.tpl Data type: Event Set. Specifies when a triple top event, shown in

Figure E.13, was detected in the company’s stock value.

* sustain.tpl Data type: Event Set. Specifies when a sustain event, shown in Figure

E.14, was detected in the company’s stock value.

* increase.tpl Data type: Event Set. Specifies when an increase event, shown in Figure

E.15, was detected in the company’s stock value.

* decrease.tpl Data type: Event Set. Specifies when a decrease event, shown in Figure

E.16, was detected in the company’s stock value.



Value

Double Top

™

\ /
/[ N~ \
NS

\

/ \
| N\

Time

35

Figure E.7: Double Top

Value

Head and Shoulders

// N/ N\~ \\

/ \
| _ N\

Time

35

Figure E.8: Head and Shoulders

Value

Inverse Head and Shoulders

\ /

\ /

\ N 7/
\Z A/
- \/ |

5 10 15 20 25 30

Time

Figure E.9: Inverse Head and Shoulders

109



110 APPENDIX E. APPENDIX STOCK MARKET DATA

Panic Reversal

A\
3 7 |\
= ~ \
- N

Figure E.10: Panic Reversal

Rounded Bottom
\ /
AN /
s\ /
N\ 4
5 10 15 20 25 30 35
Time

Figure E.11: Rounded Bottom

\ /
L\ /
AN AN AN /

vV N7
5 10 15 _ 20 25 30 3|5

Figure E.12: Triple Bottom



111

Triple Top

N /N /\
// AV A V4 \\

Value

/ \
/ _ —\
0 5 10 15 20 25 30 35
Time
Figure E.13: Triple Top
Sustain
Time
Figure E.14: Sustain
Increase
)
prd
~
~
e
/
/
- _

Figure E.15: Increase



112 APPENDIX E. APPENDIX STOCK MARKET DATA

Decrease

Value

Time

Figure E.16: Decrease



Appendix F

Appendix Sleep Data

Descriptions of the attributes of the data set used for ASAS evaluation over clinical sleep

study data are given here.

sleepstageN Data type: Event Set. Specifies when Sleep Stage N occurs during the

patient’s night’s sleep.

sleepstageW Data type: Event Set. Specifies when the patient awakes during the

night’s sleep.

sleepstagel Data type: Event Set. Specifies when Sleep Stage 1 occurs during the

patient’s night’s sleep.

sleepstage2 Data type: Event Set. Specifies when Sleep Stage 2 occurs during the

patient’s night’s sleep.

sleepstage3d Data type: Event Set. Specifies when Sleep Stage 3 occurs during the

patient’s night’s sleep.

sleepstage4 Data type: Event Set. Specifies when Sleep Stage 4 occurs during the

patient’s night’s sleep.

113



114 APPENDIX F. APPENDIX SLEEP DATA

sleepstageR Data type: Event Set. Specifies when Sleep Stage REM occurs during the

patient’s night’s sleep.

low-oxy-pot Data type: Event Set. Specifies when patient experiences a low oxygen

potential during the night’s sleep.

very-low-heart-rate Data type: Event Set. Specifies when patient experiences a low

heart rate during the night’s sleep.

mild-reduce-heart-rate Data type: Event Set. Specifies when patient experiences a

mildly reduced heart rate during the night’s sleep.

OSA Data type: Nominal. Possible values: { no, mild, moderately-severe, severe,
CPAP-removes-apnea, insignificant, mildtomoderate } Specifies the patient’s sever-

ity of Obstructive Sleep Apnea.



