Data Mining and Knowledge Discovery 1, 259-289 (1997)
(© 1997 Kluwer Academic Publishers. Manufactured in The Netherlands.

Discovery of Frequent Episodes in Event Sequences

HEIKKI MANNILA heikki.mannila@cs.helsinki.fi
HANNU TOIVONEN hannu.toivonen@cs.helsinki.fi
A. INKERI VERKAMO inkeri.verkamo@cs.helsinki.fi

Department of Computer Science, P.O. Box 26, FIN-00014 University of Helsinki, Finland

Editor: Usama Fayyad

Received February 26, 1997; Revised July 8, 1997; Accepted July 9, 1997

Abstract. Sequences of events describing the behavior and actions of users or systems can be collected in seve
domains. An episode is a collection of events that occur relatively close to each other in a given partial order. W
consider the problem of discovering frequently occurring episodes in a sequence. Once such episodes are knov
one can produce rules for describing or predicting the behavior of the sequence. We give efficient algorithms fc
the discovery of all frequent episodes from a given class of episodes, and present detailed experimental resul
The methods are in use in telecommunication alarm management.

Keywords: event sequences, frequent episodes, sequence analysis

1. Introduction

There are important data mining and machine learning application areas where the data to
analyzed consists of a sequence of events. Examples of such data are alarms in a telecc
munication network, user interface actions, crimes committed by a person, occurrence
of recurrent illnesses, etc. Abstractly, such data can be viewed as a sequence of ever
where each event has an associated time of occurrence. An example of an event seque
is represented in figure 1. Here B, C, D, E, andF are event types, e.g., different types
of alarms from a telecommunication network, or different types of user actions, and the
have been marked on atime line. Recently, interest in knowledge discovery from sequenti
data has increased (see e.g., Agrawal and Srikant, 1995; Bettini et al., 1996; Dousson et ¢
1993; Hitonen et al., 1996a; Howe, 1995; Jonassen et al., 1995; Laird, 1993; Mannilaetal
1995; Morris et al., 1994; Oates and Cohen, 1996; Wang et al., 1994).

One basic problem in analyzing event sequences is to find fregpéstdegMannila
et al., 1995; Mannila and Toivonen, 1996), i.e., collections of events occurring frequently
together. For example, in the sequence of figure 1, the epigodefdllowed byF” occurs
several times, even when the sequence is viewed through a narrow window. Episodes,
general, are partially ordered sets of events. From the sequence in the figure one can ma
for instance, the observation that wheneesnd B occur, in either ordeiC occurs soon.

Our motivating application was in the telecommunication alarm management, where
thousands of alarms accumulate daily; there can be hundreds of different alarm type

260 MANNILA, TOIVONEN AND VERKAMO

EDF A BCEF C D BAD C EFC BEAECF A D

time

Figure 1 A sequence of events.

When discovering episodes in a telecommunication network alarm log, the goal is to finc
relationships between alarms. Such relationships can then be used in the on-line analy
of the incoming alarm stream, e.g., to better explain the problems that cause alarms,
suppress redundant alarms, and to predict severe faults.

In this paper we consider the following problem. Given a class of episodes and at
input sequence of events, find all episodes that occur frequently in the event sequence. \
describe the framework and formalize the discovery task in Section 2. Algorithms for
discovering all frequent episodes are given in Section 3. They are based on the idea
first finding small frequent episodes, and then progressively looking for larger frequen
episodes. Additionally, the algorithms use some simple pattern matching ideas to speed |
the recognition of occurrences of single episodes. Section 4 outlines an alternative way ¢
approaching the problem, based on locating minimal occurrences of episodes. Experimen
results using both approaches and with various data sets are presented in Section 5.
discuss extensions and review related work in Section 6. Section 7 is a short conclusion.

2. Event sequences and episodes

Our overall goal is to analyze sequences of events, and to discover recurrent episodes.
first formulate the concept of event sequence, and then look at episodes in more detail.

2.1. Eventsequences

We consider the input as a sequence of events, where each event has an associated tim
occurrence. Given a s&tof event typesanevents a pair(A, t), whereA € E is an event
type andt is an integer, thedccurrencé time of the event. The event type can actually
contain several attributes; for simplicity we consider here just the case where the event tyy
is a single value.

An event sequenceon E is a triple(s, Ts, Te), where

S= <(Ala tl)v (A27 tz)v R} (An’ tn))

is an ordered sequence of events such#yat E foralli =1,...,n, andtj <t forall
i =1,...,n—1. Further on;Ts and T, are integersTs is called the starting time anii
the ending time, andl; <t < Teforalli =1,...,n.

Example Figure 2 presents the event sequesee(s, 29, 68), where

s = ((E, 31), (D, 32, (F, 33, (A, 35, (B,37), (C,398),...,(D,67).

EPISODES IN EVENT SEQUENCES 261

EDF A BCEF C D BAD C EFC BEAEC A D

.......................................

30 35 40 45 50 55 60 65

Figure 2 The example event sequence and two windows of width 5.

Observations of the event sequence have been made from time 29 to just before time €
For each event that occurred in the time interval, 8, the event type and the time of
occurrence have been recorded.

In the analysis of sequences we are interested in finding all frequent episodes from
class of episodes. To be considered interesting, the events of an episode must occur cl
enough in time. The user defines how close is close enough by giving the widthtimhéhe
windowwithin which the episode must occur. We define a window as a slice of an even
sequence, and we then consider an event sequence as a sequence of partially overlapy
windows. In addition to the width of the window, the user specifies in how many windows
an episode has to occur to be considered frequent.

Formally, awindowon an event sequen&e= (s, Ts, Te) iS an event sequence =
(w, ts, te), Wherets < Tg andte > Ts, andw consists of those pair@A, t) from s where
ts <t < te. The time sparn, — t5 is called thewidth of the windoww, and it is denoted
width(w). Given an event sequenceand an integewin, we denote byV(s, win) the set
of all windowsw on s such thatvidth(w) = win.

By the definition the first and last windows on a sequence extend outside the sequence,
that the first window contains only the first time point of the sequence, and the last window
contains only the last time point. With this definition an event close to either end of a
sequence is observed in equally many windows to an event in the middle of the sequenc
Given an event sequense= (s, Tg, Te) and a window widthwin, the number of windows
in W(s, win) is To — Ts + win — 1.

Example Figure 2 shows also two windows of width 5 on the sequencA window
starting at time 35 is shown in solid line, and the immediately following window, starting
at time 36, is depicted with a dashed line. The window starting at time 35 is

(((A, 39, (B, 37, (C, 38), (E, 39)), 35, 40).

Note that the eventF, 40) that occurred at the ending time is not in the window. The
window starting at 36 is similar to this one; the difference is that the first gv&r5) is
missing and there is a new evdii, 40) at the end.

The set of the 43 partially overlapping windows of width 5 constitutgss, 5); the
first window is (4, 25, 30), and the last ig((D, 67)), 67, 72). Event(D, 67) occurs in 5
windows of width 5, as does, e.g., evéat, 50).

2.2. Episodes

Informally, an episode is a partially ordered collection of events occurring together. Episode
can be described as directed acyclic graphs. Consider, for instance, episgdesdy

262 MANNILA, TOIVONEN AND VERKAMO

@
OanG ® G@

82

Figure 3 Episodesy, g, andy.

in figure 3. Episode is aserial episodeit occurs in a sequence only if there are events of
typesE andF that occur in this order in the sequence. In the sequence there can be othe
events occurring between these two. The alarm sequence, for instance, is merged frc
several sources, and therefore it is useful that episodes are insensitive to intervening ever
Episodeg is aparallel episode no constraints on the relative order Afand B are given.
Episodey is an example of non-serial and non-parallel episode: it occurs in a sequence i
there are occurrences #fand B and these precede an occurrenc€pho constraints on

the relative order ofA and B are given. We mostly consider the discovery of serial and
parallel episodes.

We now define episodes formally. Aapisodex is a triple(V, <, g) whereV is a set of
nodes< is a partial order o/, andg : V — E is a mapping associating each node with
an event type. The interpretation of an episode is that the evegt¥inhave to occur in
the order described by. Thesizeof «, denotede|, is |V|. Episodex is parallel if the
partial order< s trivial (i.e.,x £ yforall x, y € V such thai # y). Episodex is serialif
the relation< is a total order (i.ex < yory < xfor all x, y € V). Episodex is injective
if the mappingg is an injection, i.e., no event type occurs twice in the episode.

Example Consider episode = (V, <, g) in figure 3. The seW¥ contains two nodes;
we denote them by andy. The mappingy labels these nodes with the event types that
are seen in the figurgg(x) = E andg(y) = F. An event of typeE is supposed to occur
before an event of typ€, i.e., x precedey, and we havex < y. Episodex is injective,
since it does not contain duplicate event types. In a window wherecurs there may, of
course, be multiple events of typEsand F, but we only compute the number of windows
wherex occurs at all, not the number of occurrences per window.

We next define when an episode is a subepisode of another; this relation is used extensive
in the algorithms for discovering all frequent episodes. An epigpde(V’, </, d) is a
subepisodef o = (V, <, g), denoted® < «, if there exists an injective mapping: V' —
V such thatg’'(v) = g(f(v)) for all v € V’, and for allv, w € V' with v <’ w also
f(v) < f(w). An episodex is asuperepisodef g if and only if 8 < a. We write 8 < «
if 8 <aanda £ B.

Example From figure 3 we see th@ < y sinceg is a subgraph of.. In terms of the
definition, there is a mappin§ that connects the nodes labeladvith each other and the
nodes labeled with each other, i.e., both nodes @have (disjoint) corresponding nodes
in y. Since the nodes in episogeare not ordered, the corresponding nodeg itho not
need to be ordered, either.

EPISODES IN EVENT SEQUENCES 263

We now consider what it means that an episode occurs in a sequence. Intuitively, th
nodes of the episode need to have corresponding events in the sequence such that the e
types are the same and the partial order of the episode is respected. Formally, an episc
a = (V, <, g) occursin an event sequence

S= (((Al’ tl)v (A27 tz)v R (An’ tn)>v TSv Te)a

if there exists an injective mappig V — {1, ..., n} from nodes ofx to events ok such
thatg(x) = Anw forallx e V, andforallx, y € V withx # yandx < ywe havex) < thy).

Example The window(w, 35, 40) of figure 2 contains event&, B, C, andE. Episodes
B andy of figure 3 occur in the window, but does not.

We define thdrequencyof an episode as the fraction of windows in which the episode
occurs. That is, given an event sequence s and a window wiidththe frequency of an
episodex in sis

{w € W(s, win) | a occurs inwj}]|
W (s, win)|

Given afrequency threshold mitir, « is frequentif fr («, s, win) > min_fr. The task we
are interested in is to discover all frequent episodes from a given&labspisodes. The
class could be, e.g., all parallel episodes or all serial episodes. We denote the collection
frequent episodes with respectdavin andmin_fr by F (s, win, min_fr).

Once the frequent episodes are known, they can be used to obtain rules that descri
connections between events in the given event sequence. For example, if we know that t
episodes of figure 3 occurs in 4.2% of the windows and that the superepigauturs in
4.0% of the windows, we can estimate that after seeing a windowAvihd B, there is a
chance of about 0.95 thét follows in the same window. Formally, a&pisode rulés an
expression = y, whereg andy are episodes such that< y. The fractionggzzzmg
is theconfidencef the episode rule. The confidence can be interpreted as the conditiona
probability of the whole ofy occurring in a window, given thag occurs in it. Episode
rules show the connections between events more clearly than frequent episodes alone.

fr(a, s, win) =

3. Algorithms

Given all frequent episodes, rule generation is straightforward. Algorithm 1 describes hov
rules and their confidences can be computed from the frequencies of episodes. Note tt
indentation is used in the algorithms to specify the extent of loops and conditional statement

Algorithm 1.

Input: AsetE of event types, an event sequesaaver E, a setf of episodes, a window
width win, a frequency thresholehin_fr, and a confidence threshatain_conf.

Output: The episode rules that hold gwith respect tavin, min_fr, andmin_conf.
Method:

1. /* Find frequent episodes (Algorithm 2):/*
2. computeF (s, win, min_fr);

264 MANNILA, TOIVONEN AND VERKAMO

/* Generate rules: /
for all « € F(s, win, min_fr) do
forall 8 <« do
if fr (o) /fr (8) > min_conf then
output the rulgg — « and the confidenci («) /fr(8);

Nouhsw

We now concentrate on the following discovery task: given an event seqgemsetf
of episodes, a window widtlin, and a frequency threshatain_fr, find 7 (s, win, min_fr).
We give first a specification of the algorithm and then exact methods for its subtasks. W
call these methods collectively thelW#pi algorithm. See Section 6 for related work and
some methods based on similar ideas.

3.1. Main algorithm

Algorithm 2 computes the collectigh(s, win, min_fr) of frequent episodes from a cla&ef
episodes. The algorithm performs a levelwise (breadth-first) search in the class of episod
following the subepisode relation. The search starts from the most general episodes, .t
episodes with only one event. On each level the algorithm first computes a collection o
candidate episodes, and then checks their frequencies from the event sequence. The cru
point in the candidate generation is given by the following immediate lemma.

Lemmal. Ifan episodex is frequentin an event sequergéhen all subepisodes < o
are frequent.

The collection of candidates is specified to consist of episodes such that all smalle
subepisodes are frequent. This criterion safely prunes from consideration episodes that c
not be frequent. More detailed methods for the candidate generation and database p:
phases are given in the following subsections.

Algorithm 2.

Input: AsetE of event types, an event sequersagver E, a setf of episodes, a window
width win, and a frequency threshoidin_ fr

Output: The collectionF (s, win, min_fr) of frequent episodes

Method:

1. Cii={aefl||al =1}

2. 1:=1;

3. whileC # @ do

4 /* Database pass (Algorithms 4 and 5). *

5 computeF = {a € C | fr(e, s, win) > min_fr};

6. =141

7 /* Candidate generation (Algorithm 3);/*

8 computel; :={a € £ | |a| =1 and for allg € £ such thai8 < « and

9. |8l <1 we haveg € Fg};
10. for alll do outputFy;

EPISODES IN EVENT SEQUENCES 265

3.2. Generation of candidate episodes

We present now a candidate generation method in detail. Algorithm 3 computes candidat:
for parallel episodes. The method can be easily adapted to deal with the classes of paral
episodes, serial episodes, and injective parallel and serial episodes. In the algorithm,
episodex = (V, <, @) is represented as a lexicographically sorted array of event types.
The array is denoted by the name of the episode and the items in the array are referred
with the square bracket notation. For example, a parallel epigagith events of types
A,C,C, andF is represented as an arraywith «[1] = A, «[2] = C,«[3] = C, and

a[4] = F. Collections of episodes are also represented as lexicographically sorted array
i.e., theith episode of a collectioft is denoted byFTi].

Since the episodes and episode collections are sorted, all episodes that share the se
first event types are consecutive in the episode collection. In particular, if epigpldes
andF[j] of sizel share the firsk — 1 events, then for akt withi < k < j we have that
Filk] shares also the same events. A maximal sequence of consecutive episodes of siz
that share the firdt— 1 events is called block Potential candidates can be identified by
creating all combinations of two episodes in the same block. For the efficient identificatior
of blocks, we store i .block_starf j] for each episodér[j] thei such thatF[i] is the
first episode in the block.

Algorithm 3.
Input: Asorted array#; of frequent parallel episodes of size
Output: Asorted array of candidate parallel episodes of kizel.

Method:
1. C1:=0
2. k:=0;
3. ifl =1then for h:= 1to|F| do F .block starfh] := 1;
4, fori:=1to|A|do
5. current_block start:= k + 1;
6. for (j :=1i; A .block starfj] = A .block star{i]; j ;== j + 1) do
7. /* Aliland A[j] havel — 1 first event types in common,
8. build a potential candidateas their combination: #
9. forx ;= 1tol dow[x] := AlillX];
10. afl + 1] == ALJI;
11. /* Build and test subepisodegsthat do not contai[y]: * /
12. fory:=1tol —1do
13. forx :==1toy— 1doB[X] := «[x];
14. forx ;= ytol dog[x] := a[x + 1];
15. if 8 is not inF thencontinue with the nexj at line 6;
16. /* All subepisodes are itFy, storex as candidate: #
17. k:=k+1;
18. CralK] = «;
19. Ciy1.block starfk] := current block start;

20. outputCiig;

266 MANNILA, TOIVONEN AND VERKAMO

Algorithm 3 can be easily modified to generate candidate serial episodes. Now the even
inthe array representing an episode are in the order imposed by a totakori@erinstance,
a serial episod@ with events of type€, A, F, andC, in that order, is represented as an
array g with g[1] = C, g[2] = A, B[3] = F, andg[4] = C. By replacing line 6 by

6. for(j := F .block starffi]; F.block starf j] = F .block starfi]; j := j + 1) do

Algorithm 3 generates candidates for serial episodes.

There are further options with the algorithm. If the desired episode class consists o
parallel or serial injective episodes, i.e., no episode should contain any event type mol
than once, insert line

6b. if j =i thencontinue with the nex} at line §

after line 6.

The candidate generation method aims at minimizing the number of candidates on eac
level, in order to reduce the work per database pass. Often itcan be usefulto combine seve
candidate generation iterations to one database pass, to cut down the number of expens
database passes. This can be done by first computing candidates for the ndxi-ldyel
then computing candidates for the following lel/el 2 assuming that all candidates of level
| + 1 are indeed frequent, and so on. This method does not miss any frequent episodes, |
the candidate collections can be larger than if generated from the frequent episodes. Su
a combination of iterations is useful when the overhead of generating and evaluating th
extra candidates is less than the effort of reading the database, as is the case often in the
iterations.

The time complexity of Algorithm 3 is polynomial in the size of the collection of frequent
episodes and it is independent of the length of the event sequence.

Theorem 1. Algorithm 3 (with any of the above variatiopshas time complexity
O(12 |Fi|?log| A).

Proof: The initialization (line 3) takes timé&(|F|). The outer loop (line 4) is iterated
O(JA | times and the inner loop (line & (|7 |) times. Within the loops, a potential
candidate (lines 9 and 10) ahd- 1 subcandidates (lines 12 to 14) are built in tid +

1+ (I —) = O(?). More importantly, thé — 1 subsets need to be searched for in the
collection A/ (line 15). SinceF is sorted, each subcandidate can be located with binary
search in time(l log|F|). The total time complexity is thu® (| F | + | A 1A] 1%+ —

D1 log|A) = O(2|F|?log| Fil). 0

When the number of event typ¢g| is less thar | 7|, the following theorem gives a
tighter bound.

Theorem 2. Algorithm 3 (with any of the above variatiopshas time complexity
O |E| |Fi]log|FiD.

EPISODES IN EVENT SEQUENCES 267

Proof: The proofis similar to the one above, but we have a useful observation (due to Juh
Karkkdinen) about the total number of subepisode tests over all iterations. Consider th
number of failed and successful test separately. First, the number of potential candidat
is bounded byO(|F | |E]), since they are constructed by adding an event to a frequent
episode of sizé. There can be at most offigiled test for each potential candidate, since
the subcandidate loop is exited at the first failure (line 15). Second,seadessfutest
corresponds one-to-one with a frequent episodgjiand an event type. The numbers of
failed and successful tests are thus both bounde@ds | |[E|). Since the work per test is

O(l log| A1), the total amount of work i©(|E| | F | log|F). O

In practice the time complexity is likely to be dominated Iy | log ||, since the
blocks are typically small with respect to the sizes of hathand E. If the nhumber of
episode types is fixed, a subcandidate test can be implemented practically i€ time
removing the logarithmic factor from the running time.

3.3. Recognizing episodes in sequences

Letus now consider the implementation of the database pass. We give algorithms which re
ognize episodes in sequences in an incremental fashion. For two windesaw, ts, ts +

win) andw’ = (w',ts + 1, ts + win + 1), the sequences andw’ of events are simi-

lar to each other. We take advantage of this similarity: after recognizing episodgs in
we make incremental updates in our data structures to achieve the shift of the window t
obtainw’.

The algorithms start by considering the empty window just before the input sequence
and they end after considering the empty window just after the sequence. This way the ir
cremental methods need no other special actions at the beginning or end. When computi
the frequency of episodes, only the windows correctly on the input sequence are, of cours
considered.

3.3.1. Parallel episodes. Algorithm 4 recognizes candidate parallel episodes in an event
sequence. The main ideas of the algorithm are the following. For each candidate parall
episoder we maintain a counter.eventcountthat indicates how many events @fare
present in the window. Whet.eventcountbecomes equal tqx|, indicating thatw is
entirely included in the window, we save the starting time of the window.iimvindow
Whenea.eventcountdecreases again, indicating thais no longer entirely in the window,

we increase the field. freq.countby the number of windows wheteremained entirely in

the window. Atthe endy. freq_countcontains the total number of windows whereccurs.

To access candidates efficiently, they are indexed by the number of events of each tyj
that they contain: all episodes that contain exaetlgvents of typeA are in the list
containgA, a). When the window is shifted and the contents of the window change,
the episodes that are affected are updated. If, for instance, there is one eventAfitype
the window and a second one comes in, all episodes in theolighing A, 2) are updated
with the information that both events of typgethey are expecting are now present.

268 MANNILA, TOIVONEN AND VERKAMO

Algorithm 4.,

Input: A collectionC of parallel episodes, an event sequesce (s, Ts, Te), @ window
width win, and a frequency threshoidin_fr.

Output: The episodes daf that are frequent i with respect tavin andmin_fr.

Method:

1. /* Initialization: */

2. foreacha inC do

3 for eachAin o do

4, A.count:= 0;

5. fori ;= 1to || do containgA, i) := @;
6. foreacha inC do

7 for eachAin @ do

8 a = number of events of typA in «;
9. containgA, a) ;= containgA, a) U {«};
10. a.eventcount:= 0;

11. a.freqcount:= 0;

12. /* Recognition: *

13. forstart:= Tg — win+ 1to Te do

14. /* Bring in new events to the window: /*

15. for all events(A, t) in s such that = start+ win — 1 do
16. A.count:= A.count+ 1,

17. for eacha € containgA, A.coun? do

18. a.eventcount:= «.eventcount+ A.count

19. if «.eventcount= |«| thena.inwindow:= start,
20. /* Drop out old events from the window: /*

21. for all events(A, t) in s such that = start— 1 do

22. for eacha € containgA, A.counb do

23. if «.eventcount= |«| then

24. a.fregcount:= «. freq.count— «.inwindow+- start;
25. a.eventcount:= «.evenicount— A.count

26. A.count:= A.count— 1;

27. /*Output: */
28. for all episodes in C do
29. if a. freq.count/(Te — Ts 4+ win — 1) > min_fr thenoutpute;

3.3.2. Serial episodes. Serial candidate episodes are recognized in an event sequence b
using state automata that accept the candidate episodes and ignore all other input. The ic
is that there is an automaton for each serial episg@ad that there can be several instances
of each automaton at the same time, so that the active states reflect the (disjoint) prefix
of @ occurring in the window. Algorithm 5 implements this idea.

We initialize a new instance of the automaton for a serial episoeeery time the first
event ofe comes into the window; the automaton is removed when the same event leaves tt
window. When an automaton farreaches its accepting state, indicating thé entirely
included in the window, and if there are no other automata fothe accepting state already,

EPISODES IN EVENT SEQUENCES 269

we save the starting time of the windowsininwindow When an automaton in the accepting
state is removed, and if there are no other automaia fiothe accepting state, we increase
the fielda. freq.countby the number of windows wheteremained entirely in the window.

It is useless to have multiple automata in the same state, as they would only make tt
same transitions and produce the same information. It suffices to maintain the one th
reached the common state last since it will be also removed last. There are thus at mc
|a| automata for an episode For each automaton we need to know when it should be
removed. We can thus represent all the automata feith one array of sizéx|: the value
of w.initialized[i] is the latest initialization time of an automaton that has reachedhits
state. Recall that itself is represented by an array containing its events; this array can be
used to label the state transitions.

To access and traverse the automata efficiently they are organized in the following way
For each event typA € E, the automata that accefatare linked together to a listaits(A).

The list contains entries of the for, x) meaning that episode is waiting for its xth
event. When an everfA, t) enters the window during a shift, the ligtaits(A) is tra-
versed. If an automaton reaches a common statth another automaton, the earlier entry
a.initialized[i] is simply overwritten.

The transitions made during one shift of the window are stored in tdissitions They
are represented in the for(w, X, t) meaning that episode got its xth event, and the
latest initialization time of the prefix of lengthis t. Updates regarding the old states of
the automata are done immediately, but updates for the new states are done only after
transitions have been identified, in order to not overwrite any useful information. For eas)
removal of automata when they go out of the window, the automata initialized at tinee
stored in a lisbeginsatt).

Algorithm 5.

Input: AcollectionC of serial episodes, an event sequesiee(s, Ts, Te), @ window width
win, and a frequency thresholdin_fr

Output: The episodes df that are frequent is with respect tawvin andmin_fr

Method:

1. /*Initialization: */

2. foreacha inC do

3. fori :=1to|«| do

4. a.initialized[i] := 0;

5. waits(«[i]) := ¢;

6. for eacha € C do

7. waits(a[1)]) := wait(«[1]) U {(«, 1)};

8. «a. freqcount:= 0;

9. fort := Ts — winto T; — 1 do beginsat) := ¢;
10. /* Recognition: */
11. for start:= T — win+ 1to T, do
12. /* Bring in new events to the window: /*
13. beginsafstart+ win — 1) := @;

14. transitions:= @;

270 MANNILA, TOIVONEN AND VERKAMO

15. for all events(A, t) in s such that = start+ win— 1do

16. forall («, j) € waits(A) do

17. if | = |o| ande.initialized[j] = 0 thena.inwindow:= start,
18. if j = 1then

19. transitions:= transitionsU {(«, 1, start+ win — 1)};

20. else

21. transitions:= transitionsu {(«, j, a.initialized[j — 1])};
22. beginsafw.initialized[j — 1]) :=

23. beginsafa.initialized[j — 1]) \ {(«,] — D};
24, a.initialized[j — 1] := 0;

25. waitg(A) := waits(A) \ {(«,))};

26. forall (o, j, t) € transitions do

27. a.initialized[j] :=t;

28. beginsaft) := beginsatt) U {(«, j)};

29. if j < |o|thenwaitge[j + 1]) := waitsS(e[j + 1]) U {(e, j + D};
30. /* Drop out old events from the window:/*

31. for all («, 1) € beginsatstart— 1) do

32. if| = || thena. freg.count:= «. freq_.count— «.inwindow-+ start;
33. else waitgae[l + 1]) := waits(e[l + 1)) \ {(o, | + D)};

34. a.initialized[l] := 0O;

35. /* Output: */
36. for all episodes in C do
37. if a. freqcount/(Te — Ts + win — 1) > min_fr thenoutpute;

3.3.3. Analysis of time complexity For simplicity, suppose that the class of event tyfaes
is fixed, and assume that exactly one event takes place every time unit. Assume candidz
episodes are all of sizeand letn be the length of the sequence.

Theorem 3. The time complexity of Algorithehis O((n +12) |C).

Proof: Initialization takes time&?(|C|1?). Consider now the number of operations in the
innermost loops, i.e., increments and decremente®fentcounton lines 18 and 25. In

the recognition phase there af&n) shifts of the window. In each shift, one new event
comes into the window, and one old event leaves the window. Thus, for any episode
a.eventcountis accessed at most twice during one shift. The cost of the recognition phase
is thusO(n|C)). O

In practice the sizéof episodes is very small with respect to the sizef the sequence,
and the time required for the initialization can be safely neglected. For injective episode
we have the following tighter result.

Theorem 4. The time complexity of recognizing injective parallel episodes in Algodthm
(excluding initialization is O(i- [C|1 + n).

Proof: Considemwin successive shifts of one time unit. During such sequence of shifts,
each of théC| candidate episodescan undergo at most 2hanges: any event typecan

EPISODES IN EVENT SEQUENCES 271

have A.countincreased to 1 and decreased to 0 at most once. This is due to the fact the
after an event of typ@ has come into the window.count> 1 for the nextwin time units.
Reading the input takes time O

This time bound can be contrasted with the time usage of a trivial non-incremental metho
where the sequence is pre-processed into windows, and then frequent sets are searched
The time requirement for recognizifig| candidate sets imwindows, plus the time required
to read inn windows of sizewin, is O(n|C|| + n - win), i.e., larger by a factor ofin.

Theorem 5. The time complexity of Algorith&is O(n |C|1).

Proof: The initialization takes time&)(|C|| + win). In the recognition phase, again,
there areO(n) shifts, and in each shift one event comes into the window and one event
leaves the window. In one shift, the effort per an episad#gepends on the number of
automata accessed; there are a maximuiaoftomata for each episode. The worst-case
time complexity is thu®©(|IC|| + win+n|C|l) = O(n|C|]) (note thatwinis O(n)). O

In the worst case for Algorithm 5 the input sequence consists of events of only one ever
type, and the candidate serial episodes consist only of events of that particular type. Eve
shift of the window results now in an update in every automaton. This worst-case complexit
is close to the complexity of the trivial non-incremental metkidah |C|| 4+ n - win). In
practical situations, however, the time requirement of Algorithm 5 is considerably smaller
and we approach the savings obtained in the case of injective parallel episodes.

Theorem 6. The time complexity of recognizing injective serial episodes in Algorthm
(excluding initialization is O(n |C|).

Proof: Each of theO(n) shifts can now affect at most two automata for each episode:
when an event comes into the window there can be a state transition in at most one auton
ton, and at most one automaton can be removed because the initializing event goes out
the window.]

3.4. General partial orders

So far we have only discussed serial and parallel episodes. We next discuss briefly the u
of other partial orders in episodes. The recognition of an arbitrary episode can be reduced
the recognition of a hierarchical combination of serial and parallel episodes. For example
episodey infigure 4 is a serial combination of two episodes: a parallel epi§ammsisting

o ®
& @ ©

¥ 6! 5//

Figure 4 Recursive composition of a complex episode.

272 MANNILA, TOIVONEN AND VERKAMO

of A andB, and an episod&’ consisting ofC alone. The occurrence of an episode in a
window can be tested using such hierarchical structure: to see whether episodars in

a window one checks (using a method for serial episodes) whether the subepisautds
8” occur in this order; to check the occurrencé’abne uses a method for parallel episodes
to verify whetherA and B occur.

There are, however, some complications one has to take into account. First, it is soms
times necessary to duplicate an event node to obtain a decomposition to serial and paral
episodes. Duplication works easily with injective episodes, but non-injective episodes nee
more complex methods. Anotherimportant aspect is that composite events have a duratic
unlike the elementary events

A practical alternative to the recognition of general episodes is to handle all episode
basically like parallel episodes, and to check the correct partial ordering only when al
events are in the window. Parallel episodes can be located efficiently; after they have be
found, checking the correct partial ordering is relatively fast.

4. An alternative approach to episode discovery: minimal occurrences
4.1. Outline of the approach

In this section we describe an alternative approach to the discovery of episodes. Inste:
of looking at the windows and only considering whether an episode occurs in a window o
not, we now look at the exact occurrences of episodes and the relationships between thc
occurrences. One of the advantages of this approach is that focusing on the occurrences
episodes allows us to more easily find rules with two window widths, one for the left-hand
side and one for the whole rule, such asAiandB occur within 15 seconds, thé&hfollows
within 30 seconds”.

The approach is based on minimal occurrences of episodes. Besides the new rule fc
mulation, the use of minimal occurrences gives raise to the following new method, callec
MINEPI, for the recognition of episodes in the input sequence. For each frequent episod
we store information about the locations of its minimal occurrences. In the recognition
phase we can then compute the locations of minimal occurrences of a candidate episo
« as a temporal join of the minimal occurrences of two subepisodes @his is simple
and efficient, and the confidences and frequencies of rules with a large number of differer
window widths can be obtained quickly, i.e., there is nho need to rerun the analysis if one onl
wants to modify the window widths. In the case of complicated episodes, the time neede
for recognizing the occurrence of an episode can be significant; the use of stored minim:
occurrences of episodes eliminates unnecessary repetition of the recognition effort.

We identify minimal occurrences with their time intervals in the following way. Given an
episodex and an event sequensene say that the intervatd, t) is aminimal occurrence
ofains, if (1) « occurs inthe window = (w, ts, te) ons, and if (2)a does not occur in any
proper subwindow ow, i.e.,z does not occur in any window' = (w’, t;, t) onssuch that
ts < t/, t; < te, andwidth(w’) < width(w). Theset of(intervals of) minimal occurrences
of an episodex in a given event sequence is denotednby(«) = {[ts, te) | [ts, te) iS @
minimal occurrence of}.

EPISODES IN EVENT SEQUENCES 273

Example Consider the event sequens@ figure 2 and the episodes in figure 3. The
parallel episode8 consisting of event typeé and B has four minimal occurrences &
mao(B8) = {[35, 38), [46, 48), [47, 58), [57, 60)}. The partially ordered episode has the
following three minimal occurrences: [389), [46, 51), [57, 62).

An episode rule(with two time boundsis an expressio[win;] = «[win,], where
B anda are episodes such thgt < «, andwin; andwin, are integers. The informal
interpretation of the rule is that if episo@énas a minimal occurrence at intervl ft) with
te — ts < wing, then episode occurs at intervaltf, t;) for somet, such that/ —ts < winy.
Formally this can be expressed in the following way. Giwém andg, denotemoyin, (8) =
{[ts,te) € MoB) | te —ts < wing}. Further, givene and an interval §s, Ue), define
ocd, [Us, Ueg)) =true if and only if there exists a minimal occurrencg,[u;) € mo(w)
such thaus < u; andu; < ue. The confidence of an episode rgwin;] = a[winy] is
now

[{[ts, te) € MQyin, (B) | OCAc, [ts, ts + Winy))}|
[MQyin, (B) |)

Example Continuing the previous example, we have, e.g., the following rules and confi-
dences. Fortherulg{3] = y[4]we have{[35, 38), [46, 48), [57, 60)}| inthe denominator
and|{[35, 38)}| in the numerator, so the confidence 81 For the rule3[3] = y[5] the
confidence is 1.

There exists a variety of possibilities for the temporal relationships in episode rules witt
two time bounds. For example, the partial order of events can be such that the left-han
side events follow or surround the unseen events in the right-hand side. Such relationshi
are specified in the rules since the rule right-hand sitkea superepisode of the left-hand
side 8, and thusy contains the partial order of each event in the rule. Alternatively, rules
that point backwards in time can be defined by specifying that thegfwen;] = o[win;]
describes the case where episgdbas a minimal occurrence at an intervl fo) with
te — ts < winy, and episode occurs at intervalt], t;) for somet; such thate — t; < win,.

For brevity, we do not consider any alternative definitions.

In Section 2 we defined the frequency of an episode as the fraction of windows tha
contain the episode. While frequency has a nice interpretation as the probability that
randomly chosen window contains the episode, the concept is not very useful with minime
occurrences: (1) there is no fixed window size, and (2) a window may contain severa
minimal occurrences of an episode. Instead of frequency, we use the consepipoft
the number of minimal occurrences of an episode: the support of an episadegiven
event sequencegis |[mo(«)|. Similarly to a frequency threshold, we now use a threshold
for the support: given a support threshotdn_sup an episoder is frequent ifmo(a)|
> min_sup

The current episode rule discovery task can be stated as follows. Given an event sequer
s, a classE of episodes, and a s¥f of time bounds, find all frequent episode rules of the
form g[win;] = a[winy], whereg, o € £, B < «, andwing, win, € W.

274 MANNILA, TOIVONEN AND VERKAMO

4.2. Finding minimal occurrences of episodes

In this section we describe informally the collectionNdpi of algorithms that locate the
minimal occurrences of frequent serial and parallel episodes. Let us start with some ol
servations about the basic properties of episodes. Lemma 1 still holds: the subepisod
of a frequent episode are frequent. Thus we can use the main algorithm (Algorithm 2
and the candidate generation (Algorithm 3) also fokifl. We have the following results
about the minimal occurrences of an episode also containing minimal occurrences of it
subepisodes.

Lemma2. Assume isan episode anfl < « isits subepisode. Ifts, te) € mo(«), theng
occursints, te) and hence there is an intervals, ug) € mo(8) suchthat < us < ue < te.

Lemma 3. Leta be a serial episode of size |, and &4, tc) € mo(w). Then there are
subepisodea; and«; of « of size |- 1 such that for somq}t< te and gz > ts we have
[ts, t}) € mo(ery) and[t2, te) € mo(az).

Lemma 4. Leta be a parallel episode of size &nd let[ts, te) € mo(a). Then there are
subepisodes; anda; of @ of size |- 1 such thaft?, t}) € ma(ey) and[t2, t2) € mo(ay)
for some ¢, t1, t2,t2 e [ts, te], and furthermored = min{tl, t?} and t = maxt?, t3}.

The minimal occurrences of a candidate episedee located in the following way. In
the first iteration of the main algorithmo(«) is computed from the input sequence for all
episodesr of size 1. In the rest of the iterations, the minimal occurrences of a candidate
are located by first selecting two suitable subepisedesda, of o, and then computing a
temporal join between the minimal occurrencescdindas, in the spirit of Lemmas 3 and 4.

To be more specific, for serial episodes the two subepisodes are selected &p that
contains all events except the last one apdh turn contains all except the first one. The
minimal occurrences af are then found with the following specification:

mo(a) = {[ts, Ue) | there aretf, ts) € mo(a1) and [us, Ue) € Mo(ap)
such thatg < ug, te < Ue, and fs, Ug) is minimal.

For parallel episodes, the subepisodgsand a, contain all events except one; the
omitted events must be different. See Lemma 4 for the idea of how to compute the minime
occurrences af.

The minimal occurrences of a candidate episedean be found in a linear pass over
the minimal occurrences of the selected subepisagdesdw,. The time required for one
candidate is thu® (Jmo(x1)| + |mo(e2)| + [mo(w)|), which isO(n), wheren is the length
of the event sequence. To optimize the running timeanda, can be selected so that
Imo(a1)| + |mo(az)| is minimized.

The space requirement of the algorithm can be expressed,; 3s .- Imo(a)|, as-
suming the minimal occurrences of all frequent episodes are stored, or alternatively &
max (Zae?i uF,, IMo@)D, if only the current and next levels of minimal occurrences are

EPISODES IN EVENT SEQUENCES 275

stored. The size ozaefl Imo(«)| is bounded byn, the number of events in the input se-
quence, as each event in the sequence is a minimal occurrence of an episode of size 1. In
second iteration, an event in the input sequence can start at.mostinimal occurrences

of episodes of size 2. The space complexity of the second iteration i€XH&s|n).

While minimal occurrences of episodes can be located quite efficiently, the size of the
data structures can be even larger than the original database, especially in the first couple
iterations. A practical solution is to use in the beginning other pattern matching methods
e.g., similar to the ones given forMgpi in Section 3, to locate the minimal occurrences.

Finally, note that NNEPI can be used to solve the task offri. Namely, a window
contains an occurrence of an episode exactly when it contains a minimal occurrence. Tt
frequency of an episode can thus be computed fromo(«).

4.3. Finding confidences of rules

We now show how the information about minimal occurrences of frequent episodes can b
used to obtain confidences of episode rules with two time bounds without looking at the
data again.

Recall that we defined an episode rule with two time bounds as an exprgésion] =
a[winy], whereg anda are episodes such that< «, andwin; andwin, are integers. To
find such rules, first note that for the rule to be frequent, the epigduss to be frequent.
Rules of the above form can thus be enumerated by looking at all frequent episodes
and then looking at all subepisodgsf «. The evaluation of the confidence of the rule
Blwin;] = «[winy] can be done in one pass through the structames) andmo(«), as
follows. For eachtf, t) € mo(8) with t — ts < win,, locate the minimal occurrence
[us, Ue) Of @ such thats < ug and [us, Ue) is the first interval ilfmo(«) with this property.
Then check whethare — ts < wins.

The time complexity of the confidence computation for given episgdexlx and given
time boundswin; andwin, is O(ma(8)| + |mo(w)|). The confidences for aling, win,
in the setwW of time bounds can be found, using a table of $i&?, in time O(/mo(8)| +
Imo(e)| + [W|?). For reasons of brevity we omit the details.

The seW of time bounds can be used to restrict the initial search of minimal occurrences
of episodes. GivelV, denote the maximum time bound tWnmax = max(W). In episode
rules with two time bounds, only occurrences of at mebt,,x time units can be used,;
longer episode occurrences can thus be ignored already in the search of frequent episoc
We consider the support, too, to be computed with respect to a givgnx.

5. Experiments

We have run a series of experiments using &% and MNEPI. The general performance of
the methods, the effect of the various parameters, and the scalability of the methods a
considered in this section. Consideration is also given to the applicability of the methods t
various types of data sets. At the end of the section we briefly summarize our experiences
the analysis of telecommunication alarm sequences in co-operation with telecommunicatic
companies.

276 MANNILA, TOIVONEN AND VERKAMO

The experiments have been run on a PC with 166 MHz Pentium processor and 32 Mi
main memory, under the Linux operating system. The sequences resided in a flat text file

5.1. Performance overview

For an experimental overview we discovered episodes and rules in a telecommunicatic
network fault management database. The database is a sequence of 73679 alarms coveri
time period of 7 weeks. There are 287 differenttypes of alarms with very diverse frequencie
and distributions. On the average there is an alarm every minute. However, the alarms tel
to occur in bursts: in the extreme cases over 40 alarms occurred in a period of one secor

We start by looking at the performance of theN&P1 method described in Section 3.
There are several performance characteristics that can be used to evaluate the method.
time required by the method and the number of episodes and rules found by the metho
with respect to the frequency threshold or the window width, are possible performance
measures. We present results for two cases: serial episodes and injective parallel episoc

Tables 1 and 2 represent performance statistics for finding frequent episodes in the alar
database with various frequency thresholds. The number of frequent episodes decrea:
rapidly as the frequency threshold increases, and so does the processing time.

Table 1 Performance characteristics for serial episodes withe®/; alarm database, window width 60 s.

Frequency Frequent Total
threshold Candidates episodes Iterations time (s)
0.001 4528 359 45 680
0.002 2222 151 44 646
0.005 800 48 10 147
0.010 463 22 7 110
0.020 338 10 4 62
0.050 288 2 22
0.100 287 1 16

Table 2 Performance characteristics for injective parallel episodes WikleEWY alarm database, window width
60 s.

Frequency Frequent Total
threshold Candidates episodes Iterations time (s)
0.001 2122 185 5 49
0.002 1193 93 4 48
0.005 520 32 4 34
0.010 366 17 4 34
0.020 308 3 19
0.050 287 2 15
0.100 287 1 14

EPISODES IN EVENT SEQUENCES 277

600 -

400
Episodes

200 -

0 20 40 60 80 100 120
Window width (s)

Figure 5 Number of frequent serial (solid line) and injective parallel (dotted line) episodes as a function of the
window width; WINEPI, alarm database, frequency threshal@0@2.

With a given frequency threshold, the numbers of serial and injective parallel episode
may be fairly similar, e.g., a frequency threshold of 0.002 results in 151 serial episodes C
93 parallel episodes. The actual episodes are, however, very different, as can be seen fr
the number of iterations: recall that thid iteration produces episodes of slzeFor the
frequency threshold of 0.002, the longest frequent serial episode consists of 43 events (
candidates of the last iteration were infrequent), while the longest frequent injective paralle
episodes have three events. The long frequent serial episodes are not injective. The numl
of iterations in the table equals the number of candidate generation phases. The number
database passes made equals the number of iterations, or is smaller by one when there w
no candidates in the last iteration.

The time requirement is much smaller for parallel episodes than for serial episodes wit
the same threshold. There are two reasons for this. The parallel episodes are considera
shorter and hence, fewer database passes are needed. The complexity of recogniz
injective parallel episodes is also smaller.

The effect of the window width on the number of frequent episodes is represented i
figure 5. For each window width, there are considerably fewer frequent injective parallel
episodes than frequent serial episodes. With the alarm data, the increase in the number
episodes is fairly even throughout the window widths that we considered. However, we
show later that this is not the case for all types of data.

5.2. Quality of candidate generation

We now take a closer look at the candidates considered and frequent episodes found duri
the iterations of the algorithm. As an example, let us look at what happens during the firs
iterations when searching for serial episodes. Statistics of the first ten iterations of a ru
with a frequency threshold of 0.001 and a window width of 60 s is shown in Table 3.

The three first iterations dominate the behavior of the method. During these phase:
the number of candidates is large, and only a small fraction (less than 20 per cent) of th

278 MANNILA, TOIVONEN AND VERKAMO

Table 3 Number of candidate and frequent serial episodes during the first ten iterations withi\alarm
database, frequency threshol@@1, window width 60 s.

Episode Possible Frequent

size episodes Candidates episodes Match
1 287 287 58 20%
2 82369 3364 137 4%
3 2-107 719 46 6%
4 7-10° 37 24 64%
5 2.1012 24 17 71%
6 6-101 18 12 67%
7 2.10% 13 12 92%
8 5.10%° 13 8 62%
9 1-10%2 8 3 38%
10 4.10% 3 2 67%

candidates turns out to be frequent. After the third iteration the candidate generation |
efficient, few of the candidates are found infrequent, and although the total number o
iterations is 45, the last 35 iterations involve only 1-3 candidates each. Thus we coul
safely combine several of the later iteration steps, to reduce the number of database pass

If we take a closer look at the frequent episodes, we observe that all frequent episod
longer than 7 events consist of repeating occurrences of two very frequent alarms. Each
these two alarms occurs in the database more than 12000 times (16 per cent of the eve
each).

5.3. Comparison of algorithma&/INEPI and MINEPI

Tables 4 and 5 represent performance statistics for finding frequent episodesimgth,M
the method using minimal occurrences. Compared to the corresponding figuresifs W

Table 4 Performance characteristics for serial episodes withkeM; alarm database, maximum time bound
60 s.

Support Frequent Total
threshold Candidates episodes lIterations time (s)
50 12732 2735 83 28

100 5893 826 71 16

250 2140 298 54 16

500 813 138 49 14
1000 589 92 48 14
2000 405 64 47 13

4000 352 53 46 12

EPISODES IN EVENT SEQUENCES 279

Table 5 Performance characteristics for parallel episodes witheM; alarm database, maximum time bound
60 s.

Support Frequent Total
threshold Candidates episodes Iterations time (s)
50 10041 4856 89 30

100 4376 1755 71 20

250 1599 484 54 14

500 633 138 49 13
1000 480 89 48 12
2000 378 66 47 12
4000 346 53 46 12

in Tables 1 and 2, we observe the same general tendency for a rapidly decreasing numt
of candidates and episodes, as the support threshold increases.

The episodes found by MEPI and MNEPI are not necessarily the same. If we compare
the cases in Tables 1 and 4 with approximately the same number of frequent episodes, e.
151 serial episodes for MEPI and 138 for MNEPI, we notice that they do not correspond
to the same episodes. The sizes of the longest frequent episodes are somewhat differ
(43 for WINEPI vs. 48 for MNEPI). The frequency threshold 0.002 fon\epri corresponds
to about 150 instances of the episode, at the minimum, while the support threshold use
for MINEPI is 500. The difference between the methods is very clear for small episodes
Consider an episodeconsisting of just one eve{. WINEPI considers a single eveAtto
occur in 60 windows of width 60 s, while MEPI sees only one minimal occurrence. On
the other hand, two successive events of typeesult ine occurring in 61 windows, but
the number of minimal occurrences is doubled from 1 to 2.

Figure 6 shows the time requirement for finding frequent episodes witlE®y as a
function of the support threshold. The processing time fovevi reaches a plateau when

Time (s)

0 1000 2000 3000 4000
Support threshold

Figure 6 Processing time for serial (solid line) and parallel (dotted line) episodes witb] alarm database,
maximum time bound 60 s.

280 MANNILA, TOIVONEN AND VERKAMO

the size of the maximal episodes no longer changes (in this case, at support threshold 50
The behavior is similar for serial and parallel episodes. The time requirementsvePiM
should not be directly compared toiNepI: the episodes discovered are different, and our
implementation of NNEPI works entirely in the main memory. With very large databases
this might not be possible during the first iterations; either the minimal occurrences nee
to be stored on the disk, or other methods (e.g., variants of Algorithms 4 and 5) must b
used.

5.4. Episode rules

The methods can easily produce large amounts of rules with varying confidences. Rec:
that rules are constructed by considering all frequent epise@dsshe right-hand side and

all subepisodeg =< « as the left-hand side of the rule. Additionally,M&PI considers
variations of these rules with all the time bounds in the giveVéet

Table 6 represents results with serial episodes. The initial episode generationméth M
took around 14 s, and the total number of frequent episodes was 92. The table shows tl
number of rules with two time bounds obtained by, with confidence threshold 0 and
with maximum time bound 60 s. On the left, we have varied the support threshold. Rule:
that differ only in their time bounds are excluded from the figures; the rule generation time
is, however, obtained by generating rules with four different time bounds.

The minimal occurrence method is particularly useful if we are interested in finding rules
with several different time bounds. The right side of Table 6 represents performance resul
with a varying number of time bounds. The time requirement increases slowly as more
time bounds are used, and slowlier than the number of rules.

Rules with a high confidence are often the most interesting and useful ones, especial
if they are used for prediction. Figure 7 shows how the number of distinct rules varies as
function of the confidence threshold fonftpi. Of the over 10000 rules generated, 2000
have a confidence of exactly 1. For many applications it is reasonable to use a fairly lov

Table6 Number ofrulesand rule generation time withNgpi; alarm database, serial episodes, support threshold
1000, maximum time bound 60 s, confidence threshold 0.

Varying support threshold, Varying number of time bounds,
four time bounds support threshold 1000
Support Distinct Rule gen. Number of All Rule gen.
threshold rules time (s) time bounds rules time (s)
50 50470 149 1 1221 13
100 10809 29 2 2488 13
250 4041 20 4 5250 15
500 1697 16 10 11808 18
1000 1221 15 20 28136 22
2000 1082 14 30 42228 27

4000 1005 14 60 79055 43

EPISODES IN EVENT SEQUENCES 281

10000

8000

Rules 6000

4000

2000

1 1 1 |

0
0 0.2 0.4 0.6 0.8 1

Confindence threshold

Figure 7. Total number of distinct rules found byINEPI with various confidence thresholds; alarm database,
maximum time bound 60 s, support threshold 100.

confidence threshold in order to point out the interesting connections, as is discussed in tl
following subsection.

The amount of almost 80000 rules, obtained with 60 time bounds, may seem unnecessar
large and unjustified. Remember, however, that when ignoring the time bounds, there a
only 1221 distinct rules. The rest of the rules present different combinations of time bounds
in this case down to the granularity of one second. For the cost of 43 s we thus obtain ver
fine-grained rules from the frequent episodes. Different criteria, such as a confidenc
threshold or the deviation from an expected confidence, can then be used to select the m

interesting rules from these.

5.5. Results with different data sets

In addition to the experiments on the alarm database, we have ngrhbn a variety of
different data collections to get a better view of the usefulness of the method. The dat
collections that were used and some results with typical parameter values are presented

Table 7.

Table 7 Characteristic parameter values for each of the data sets and the number of episodes and rules found
MINEPL.

Data set Event Support Max time Confidence Frequent

name Events types threshold bound threshold episodes Rules
alarms 73679 287 100 60 0.8 826 6303
Wwww 116308 7634 250 120 0.2 454 316
textl 5417 1102 20 20 0.2 127 19
text2 2871 905 20 20 0.2 34 4
protein 4941 22 7 10 n/a 21234 n/a

282 MANNILA, TOIVONEN AND VERKAMO

The WWW data is part of the WWW server log from the Department of Computer
Science at the University of Helsinki. The log contains requests to WWW pages at the
department’s server made by WWW browsers in the Internet. We consider the WWW pag
fetched as the event type. The total number of events in the data set is 116308, coverit
three weeks in February and March, 1996. In total, 7634 different pages are referred t«
Requests for images have been excluded from consideration.

Suitable support thresholds vary a lot, depending on the number of events and the di
tribution of event types. A suitable maximum time bound for the device-generated alarn
data is one minute, while the slower pace of a human user requires using a larger tin
bound (two minutes or more) for the WWW log. By using a relatively small time bound we
reduce the probability of unrelated requests contributing to the support. A low confidenc:
threshold for the WWW log is justified since we are interested in all fairly usual patterns of
usage. In the WWW server log we found, e.g., long paths of pages from the home page «
the department to the pages of individual courses. Such behavior suggests that rather th
using a bookmark directly to the home page of a course, many users quickly navigate the
from the departmental home page.

The two text data collections are modifications of the same English text. Each word is
considered an event, and the words are indexed consecutively to give a “time” for eac
event. The end of each sentence causes a gap in the indexing scheme, to correspond
longer distance between words in different sentences. We used text from GNU man pag
(the gnu awk manual). The size of the original text (textl) is 5417 words, and the size o
the condensed text file (text2), where non-informative words such as articles, preposition:
and conjunctions, have been stripped off, is 2871 words. The number of different words i
the original text is 1102 and in the condensed text 905.

For text analysis, there is no point in using large “time” bounds, since it is unlikely that
there is any connection between words that are not fairly close to each other. This ca
be clearly seen in figure 8 which represents the number of episodes found with variou
window widths using WNEPI. This figure reveals behavior that is distinctively different

20000

15000
Episodes
10000

5000

0 20 40 60 80
Window width (s)

Figure 8 Number of serial (solid line) and injective parallel (dotted line) episodes as a function of the window
width; WINEPI, compressed text data (text2), frequency threshold 0.02.

EPISODES IN EVENT SEQUENCES 283

from the corresponding figure 5 for the alarm database. We observe that for the text dat
the window widths from 24 to 50 produce practically the same amount of serial episodes
The number of episodes will only increase with considerably larger window widths. For
this data, the interesting frequent episodes are smaller than 24, while the episodes fou
with much larger window widths are noise. The same phenomenon can be observed ft
parallel episodes. The best window width to use depends on the domain, and cannot |
easily adjusted automatically.

Only few rules can be found in text using a simple analysis like this. The strongest rule:
in the original text involve either the woghwk, or common phrases such as

the ,value [2] = of [3] (confidence 0.90

meaning that in 90% of the cases where the wondsvalue are consecutive, they are
immediately followed by the prepositiaf . These rules were not found in the condensed
text since all prepositions and articles have been stripped off. The few rules in the condenst
text contain multiple occurrences of the wayawk, or combinations of words occurring

in the header of each main page, suclires software

We performed scale-up tests with 5, 10, and 20 fold multiples of the compressed text file
i.e., sequences of approximately 2900 to 58000 events. The results in figure 9 show th
the time requirement is roughly linear with respect to the length of the input sequence, 8
could be expected.

Finally, we experimented with protein sequences. We used data inthe PROSITE databa
(Bairoch et al., 1995) of the ExXPASy WWW molecular biology server of the Geneva
University Hospital and the University of Geneva (ExPASy). PROSITE contains biologi-
cally significant DNA and protein patterns that help to identify to which family of protein (if
any) a new sequence belongs. The purpose of our experiment is to evaluate our algorith
against an external data collection and patterns that are known to exist, not to find patter
previously unknown to the biologists. We selected as our target a family of 7 sequence
(“DNA mismatch repair proteins 1", PROSITE entry PS00058). The sequences in the family

Time (s)

Relative size of database

Figure 9 Scale-up results for serial (solid line) and injective parallel (dotted line) episodes wittPlylcom-
pressed text data, maximum time bound 60, support threshold 10 for the smallesfdile for the larger files).

284 MANNILA, TOIVONEN AND VERKAMO

are known to contain the strifgFRGEALof seven consecutive symbols. The methods can
be easily modified to take several separate sequences as input, and to compute the sup
of an episode, e.g., as the number of input sequences that contain a (minimal) occurrenc
of @ of length at most the maximum time bound. For simplicity, we transformed the data in
a manner similar to the English text: symbols are indexed consecutively, and between tt
protein sequences we placed a gap. The total length of this data set is 4941 events, with
alphabet of 22 event types.

The parameter values for the protein database are chosen on purpose to reveal the patt
that is known to be present in the database. The window width was selected to be 1
i.e., slightly larger than the length of the pattern that we were looking for, and the suppor
threshold was set to 7, for the seven individual sequences in the original data. With thi
data, we are only interested in the longest episodes (of length 7 or longer). Of the mor
than 20000 episodes found, 17 episodes are of length 7 or 8. As expected, these cont:
the sequenc&FRGEALthat was known to be in the database. The longer episodes are
variants of this pattern with an eighth symbol fairly near, but not necessarily immediately
subsequent to the pattern (e @FRGEAL*$. These types of patterns belong to the pattern
class used in PROSITE but, to our surprise, these longer patterns are not reported in t
PROSITE database.

5.6. Experiences in alarm analysis

Our algorithms for finding episodes have been applied to the analysis of telecommunicatio
alarms. We briefly describe the application and summarize our experiencesatsaer”
et al. (1996a, 1996b) for more details.

Telecommunication networks are growing fast in size and complexity, and at the sam
time their management is becoming more difficult. The task of identifying and correcting
faults in telecommunication networks is, in particular, a critical task of network manage-
ment. Network elements produce large amounts of alarms about the faults in a network, b
fully employing this valuable data is difficult due to the high volume and the fragmented
nature of the information. Moreover, changes in equipment, software, and network loa
mean that the characteristics of the alarm data change.

Episodes can be used in building systems for alarm correlation, a central techniqu
in fault identification. In alarm correlation, a management center automatically analyze:
the stream of alarms it receives from a telecommunication network. Alarm correlation is
typically based on looking at the active alarms within a time window, and interpreting them
as a group. This interpretation can result in filtering of redundant alarms, identificatior
of faults, and in suggestions for corrective actions. See, e.g., Jakobson and Weissm
(1993) for a description of a representative correlation system; similar approaches ha\
been used successfully also in process control tasks (Milne et al., 1994). While the us
of alarm correlation systems is quite popular and methods for specifying the correlation
are maturing, acquiring all the knowledge necessary for constructing an alarm correlatio
system for a network and its elements is difficult.

Our view to alarm correlation involves three phases. (1) A large database of alarm
is analyzed off-line, and frequent episodes are discovered. (2) The network manageme

EPISODES IN EVENT SEQUENCES 285

specialists use discovered episodes as drafts for correlation rules, when building or updatil
a correlation system. (3) The correlation system is applied in real-time alarm processing
The methodology for the first step and a supporting system, TASA, have been described
Hatdnen et al. (1996a).

Knowledge about different aspects of alarms can be discovered by specifying the evel
typesin alternative ways. If only the alarm type is considered as the event type, then episod
reveal connections between types of alarms without respect to the network elements th
sent the alarms. Alternatively, e.g., the pair (sender, alarm type) can be considered
constitute the event type, thus making it explicit that the input is merged from alarms fron
several senders in the network. An episode rule found in events like this shows connectior
between alarms from particular network elements. Events consisting of the (sender typ
alarm type) pair have actually proved to be one of the most useful forms: episode rule
between problems in different types of devices seem to describe the network behavior in
reasonable level of abstraction.

Episode algorithms have been in prototype use in four telecommunication companie
since the beginning of 1995. Beginning from the first tests, discovered episodes hav
been applied in alarm correlation systems. Unexpected but useful dependencies have be
found, e.g., between network elements which are notimmediately connected in the netwol
topology. The fault management experts in the telecommunication companies have four
episodes useful in three tasks: (1) finding long-term, rather frequently occurring dependet
cies, (2) creating an overview of a short-term alarm sequence, and (3) evaluating the alar
database consistency and correctness. Although the algorithms are not directly applicat
for on-line analysis, they have turned out to be useful in network surveillance. Especially
when supplemented with browsing tools, such as in the TASA system, episodes can provic
useful views to the collection of recent alarms.

6. Related work

The work most closely related to ours is perhaps (Agrawal and Srikant, 1995; Srikant ani
Agrawal, 1996). There multiple sequences are searched for patterns that are similar to ser
episodes with some extra restrictions and an event taxonomy. Our methods can be extenc
with a taxonomy by a direct application of the similar extensions to association rules (Har
and Fu, 1995; Holsheimer et al.,1995; Srikant and Agrawal, 1995). Also, our methods ca
be applied on analyzing several sequences; there is actually a variety of choices for tt
definition of frequency (or support) of an episode in a set of sequences.

Patterns over multiple, synchronized sequences are searched for in Oates and Cof
(1996). The patterns are similar to but more rigid than episodes. For instance, the ir
sertion of unrelated events into the sequences is problematic. The use of multiple s
guences corresponds here to searching episodes from a sequence of (sender, alarm ty
pairs.

First order temporal logic has been proposed as a means of both expressing and disct
ering temporal patterns (Padmanabhan and Tuzhilin, 1996). The formalism is strong ar
allows expressing more complex patterns than episodes; it is unclear what the complexi
of different discovery tasks is. There are also some interesting similarities between th

286 MANNILA, TOIVONEN AND VERKAMO

discovery of frequent episodes and the work done on inductive logic programming (see
e.g., Muggleton, 1992); a noticeable difference is caused by the sequentiality of the unde
lying data model, and the emphasis on time-limited occurrences. Similarly, the problen
of looking for one occurrence of an episode can also be viewed as a constraint satisfactic
problem.

For a survey on patterns in sequential data, see Laird (1993). Another knowledge dis
covery method for telecommunication alarm data has been presented in Goodman et
(1995).

The task of discovering frequent parallel episodes can be stated as a task of discoveril
all frequent sets, a central phase of discovering association rules (Agrawal et al., 1993
The rule generation methods are essentially the same for association rules\ard \the
levelwise main algorithm has also been used successfully in the search of frequent se
(Agrawal et al., 1996); a generic levelwise algorithm and its analysis has been presented
Mannila and Toivonen (1997).

Technical problems related to the recognition of episodes have been researched in se
eral fields. Taking advantage of the slowly changing contents of the group of recent even
has been studied, e.g., in artificial intelligence, where a similar problem in spirit is the
many pattern/many object pattern match problem in production system interpreters (Forg
1982). Also, comparable strategies using a sliding window have been used, e.g., to stu
the locality of reference in virtual memory (Denning, 1968). Our setting differs from these
in that our window is a queue with the special property that we know in advance when ai
event will leave the window; this knowledge is used byw##!1 in the recognition of serial
episodes. In MIEPI, we take advantage of the fact that we know where subepisodes of
candidates have occurred.

The methods for matching sets of episodes against a sequence have some similarit
to the algorithms used in string matching (e.g., Grossi and Luccio, 1989). In particular
recognizing serial episodes in a sequence can be seen as locating all occurrences of sul
quences, or matches of patterns with variable length do not care symbols, where the leng
of the occurrences is limited by the window width. Learning from a set of sequences ha
received considerable interest in the field of bioinformatics, where an interesting problem i
the discovery of patterns common to a set of related protein or amino acid sequences. T
classes of patterns differ from ours; they can be, e.g., substrings with fixed length do nc
care symbols (Jonassen et al., 1995). Closer to our patterns are those considered in We
et al. (1994). The described algorithm finds patterns that are similar to serial episode:
however, the patterns have a given minimum length, and the occurrences can be within
given edit distance. Recent results on the pattern matching aspects of recognizing episoc
can be found in Das et al. (1997).

The recent work on sequence data in databases (see Seshadri et al., 1996) provic
interesting openings towards the use of database techniques in the processing of queries
sequences. A problem similar to the computation of frequencies occurs also in the area
active databases. There triggers can be specified as composite events, somewhat simila
episodes. In Gehani et al. (1992) it is shown how finite automata can be constructed frol
composite events to recognize when a trigger should be fired. This method is not practic
for episodes since the deterministic automata could be very large.

EPISODES IN EVENT SEQUENCES 287

In stochastics, event sequence data is often called a marked point process (Kalbfleis
and Prentice, 1980). It should be noted that traditional methods for analyzing marked poir
processes are ill-suited for the cases where the number of event types is large. Howev
there is a promising combination of techniques: frequent episodes could be discovered firs
and then the phenomena they describe are analyzed in more detail with methods for mark
point processes.

7. Conclusions

We presented a framework for discovering frequent episodes in sequential data. The fram
work consists of defining episodes as partially ordered sets of events, and looking at window
on the sequence. We described an algorithmia, for finding all episodes from a given
class of episodes that are frequent enough. The algorithm was based on the discove
of episodes by only considering an episode when all its subepisodes are frequent, and
an incremental checking of whether an episode occurs in a window. The implementatio
shows that the method is efficient. We have applied the method in the analysis of the alar
flow from telecommunication networks, and discovered episodes have been embedded
alarm handling software.

We also presented an alternative approaciig®, to the discovery of frequent episodes,
based on minimal occurrences of episodes. This approach supplies more power for repi
senting connections between events, as it produces rules with two time bounds.

The rule formalisms of the two methods both have their advantages. While the rules o
MINEPI are often more informative, the frequencies and confidences of the rulesiePMW
have nice interpretations as probabilities concerning randomly chosen windows. For a larg
part the algorithms are similar, there are significant differences only in the computation o
the frequency or support. Roughly, a general tendency in the performance ignigat ¥én
be more efficient in the first phases of the discovery, mostly due to smaller space require
ment. In the later iterations, MePI is likely to outperform WNEPI clearly. The methods
can be modified for cross-use, i.e.jN#PI for finding minimal occurrences and INEPI
for counting windows, and for some large problems—whether the rule typansAnor
MINEPI—a mixture of the two methods could give better performance than either alone.

The classes of patterns discovered can be easily modified in several directions. Differel
windowing strategies could be used, e.g., considering only windows starting wiréry
time units for somewin’, or windows starting from every event. Other types of patterns
could also be searched for with similar methods, e.g., substrings with fixed length do nc
care symbols; searching for episodes in several sequences is no problem. A more gene
framework for episode discovery has been presented in Mannila and Toivonen (1996
There episodes are defined as combinations of events satisfying certain user specified un:
of binary conditions.

Interesting extensions to the work presented here are facilities for rule querying an
compilation, i.e., methods by which the user could specify the episode class in a high-leve
language and the definition would automatically be compiled into a specialization of the
algorithm that would take advantage of the restrictions on the episode class. Other ope
problems include the combination of episode techniques with marked point processes al
intensity models.

288 MANNILA, TOIVONEN AND VERKAMO

References

Agrawal, R., Imielinski, T., and Swami, A. 1993. Mining association rules between sets of items in large database:
In Proceedings of ACM SIGMOD Conference on Management of Data (SIGMOD '93). Washington, D.C.,
pp. 207-216.

Agrawal, R. and Srikant, R. 1995. Mining sequential patterns. In Proceedings of the Eleventh Internationa
Conference on Data Engineering (ICDE '95). Taipei, Taiwan, pp. 3-14.

Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., and Verkamo, A.l. 1996. Fast discovery of association rules.
In Advances in Knowledge Discovery and Data Mining. U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R.
Uthurusamy (Eds.), Menlo Park, CA: AAAI Press, pp. 307-328.

Bairoch, A., Bucher, P., and Hofmann, K. 1995. The PROSITE database, its status in 1995. Nucleic Acids Researc
24:189-196.

Bettini, C., Wang, X.S., and Jajodia, S. 1996. Testing complex temporal relationships involving multiple granu-
larities and its application to data mining. In Proceedings of the Fifteenth ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems (PODS '96). Malht€Canada, pp. 68—-78.

Das, G., Fleischer, R., Gasieniec, L., Gunopulos, D., aadkkdinen, J. 1997. Episode matching. In Proceedings
of the 8th Symposium on Combinatorial Pattern Matching (CPM '97). Aarhus, Denmark, pp. 12-27.

Denning, P.J. 1968. The working set model of program behavior. Communications of the ACM, 11(5):323-333.

Dousson, C., Gaborit, P., and Ghallab, M. 1993. Situation recognition: Representation and algorithms. In Procee
ings of the Thirteenth International Joint Conference on Atrtificial Intelligence (IJCAI-93). Chambery, France,
pp. 166-172.

ExPASy Molecular Biology Server. Geneva University Hospital and University of Geneva, Switzerland.
http://expasy.hcuge.ch/.

Forgy, C.L. 1982. Rete: A fast algorithm for the many pattern/many object pattern match problem. Artificial
Intelligence, 19:17-37.

Gehani, N., Jagadish, H., and Shmueli, O. 1992. Composite event specification in active databases. In Proceedil
of the Eighteenth International Conference on Very Large Data Bases (VLDB '92). San Diego, CA, pp. 327-338

Goodman, R.M., Ambrose, B.E., Latin, H.W., and Ulmer, C.T. 1995. Noaa—An expert system managing the
telephone network. In Integrated Network Management IV, A.S. Sethi, Y. Raynaud, and F. Faure-Vincen
(Eds.), London, UK: Chapman and Hall, pp. 316-327.

Grossi, R. and Luccio, F. 1989. Simple and efficient string matching with k mismatches. Information Processin
Letters, 33:113-120.

Han, J. and Fu, Y. 1995. Discovery of multiple-level association rules from large databases. In Proceedings of tt
21st International Conference on Very Large Data Bases (VLDB '95). Zurich, Swizerland, pp. 420-431.

Hatonen, K., Klemettinen, M., Mannila, H., Ronkainen, P., and Toivonen, H. 1996a. Knowledge discovery from
telecommunication network alarm databases. In 12th International Conference on Data Engineering (ICDE '96
New Orleans, LA, pp. 115-122.

Hatonen, K., Klemettinen, M., Mannila, H., Ronkainen, P., and Toivonen, H. 1996b. TASA: Telecommunication
alarm sequence analyzer, or how to enjoy faults in your network. In 1996 IEEE Network Operations and
Management Symposium (NOMS '96). Kyoto, Japan, pp. 520-529.

Holsheimer, M., Kersten, M., Mannila, H., and Toivonen, H. 1995. A perspective on databases and data mining
In Proceedings of the First International Conference on Knowledge Discovery and Data Mining (KDD '95).
Montréal, Canada, pp. 150-155.

Howe, A.E. 1995. Finding dependencies in event streams using local search. In Preliminary Papers of the Fif
International Workshop on Artificial Intelligence and Statistics. Ft. Lauderdale, FL, pp. 271-277.

Jakobson, G. and Weissman, M.D. 1993. Alarm correlation. IEEE Network, 7(6):52-59.

Jonassen, |., Collins, J.F., and Higgins, D.G. 1995. Finding flexible patterns in unaligned protein sequence
Protein Science, 4(8):1587-1595.

Kalbfleisch, J.D. and Prentice, R.L. 1980. The Statistical Analysis of Failure Time Data. New York, NY: John
Wiley Inc.

Laird, P. 1993. Identifying and using patterns in sequential data. In Algorithmic Learning Theory, 4th International
Workshop (ALT 93). (Lecture Notes in Artificial Intelligence 744, Berlin: Springer-Verlag). Chofu, Japan,
pp. 1-18.

EPISODES IN EVENT SEQUENCES 289

Mannila, H., Toivonen, H., and Verkamo, A.l. 1995. Discovering frequent episodes in sequences. In Proceedinc
of the First International Conference on Knowledge Discovery and Data Mining (KDD '95). Baintanada,
pp. 210-215.

Mannila, H. and Toivonen, H. 1996. Discovering generalized episodes using minimal occurrences. In Proceedin
of the Second International Conference on Knowledge Discovery and Data Mining (KDD '96). Portland, OR,
pp. 146-151.

Mannila, H. and Toivonen, H. 1997. Levelwise search and borders of theories in knowledge discovery. Data Minin
and Knowledge Discovery, 1(3):241-258.

Milne, R., Nicol, C., Ghallab, M., Trave-Massuyes, L., Bousson, K., Dousson, C., Quevedo, J., Aguilar, J., anc
Guasch, A. 1994. TIGER: Real-time situation assessment of dynamic systems. Intelligent Systems Engineerin
pp. 103-124.

Morris, R.A., Shoaff, W.D., and Khatib, L. 1994. An algebraic formulation of temporal knowledge for reasoning
aboutrecurring events. In Proceedings of the International Workshop on Temporal Representation and Reason
(TIME-94). Pensacola, FL, pp. 29-34.

Muggleton, S. 1992. Inductive Logic Programming. London, UK: Academic Press.

Oates, T. and Cohen, P.R. 1996. Searching for structure in multiple streams of data. In Proceedings of the Thirteer
International Conference on Machine Learning (ICML '96). Bari, Italy, pp. 346-354.

Padmanabhan, B. and Tuzhilin, A. 1996. Pattern discovery in temporal databases: A temporal logic approach.
Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (KDD '96).
Portland, OR, pp. 351-354.

Seshadri, P., Livny, M., and Ramakrishnan, R. 1996. SEQ: Design and implementation of a sequence databe
system. In Proceedings of the 22nd International Conference on Very Large Data Bases (VLDB '96). Mumbay
India, pp. 99-110.

Srikant, R. and Agrawal, R. 1995. Mining generalized association rules. In Proceedings of the 21st Internation:
Conference on Very Large Data Bases (VLDB '95). Zurich, Swizerland, pp. 407-419.

Srikant, R. and Agrawal, R. 1996. Mining sequential patterns: Generalizations and performance improve
ments. In Advances in Database Technology—>5th International Conference on Extending Database Technolo
(EDBT '96). Avignon, France, pp. 3—-17.

Wang, J.T.-L., Chirn, G.-W., Marr, T.G., Shapiro, B., Shasha, D., and Zhang, K. 1994. Combinatorial pattern
discovery for scientific data: Some preliminary results. In Proceedings of ACM SIGMOD Conference on
Management of Data (SIGMOD '94). Minneapolis, MI, pp. 115-125.

Heikki Mannila is a professor of Computer Science at the University of Helsinki, where he also obtained his
Ph.D.in 1985. After that he has been an associate professor at the Universities of Tampere and Helsinki, a visitil
professor at the Technical University of Vienna, and a guest researcher at the Max Planck |nstinferfiatik

in Saarbucken. He has also worked at the National Public Health Institution in Helsinki, as well as a consultant
in industry. His research interests include rule discovery from large databases, the use of Markov chain Mon
Carlo techniques in data analysis, and the theory of data mining. He is one of the program chairmen of KDD-97

Hannu Toivonenis an assistant professor at the University of Helsinki, Finland. Prior to joining the university,
he was a research engineer at Nokia Research Center, where he was involved with knowledge-based systems
methods for telecommunication network management. Hannu Toivonen earned his Ph.D. in Computer Scien
from the University of Helsinki in 1996 on data mining, with a thesis titled “Discovery of frequent patterns in large
data collections.” He is one of the developers of the TASA knowledge discovery system and the implemento
of the data mining algorithms. His current research interests are in data mining and in the use of Markov chai
Monte Carlo methods for data analysis.

Inkeri Verkamo is an assistant professor at the University of Helsinki, Finland. Her Ph.D. thesis (University of
Helsinki, 1988) handled memory performance, specifically sorting in hierarchical memories. Recently, she ha
been involved in software engineering education as well as research for developing tools for knowledge base
system development. Her current research interests cover software performance and data mining.

