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Abstract

A temporal association rule is an association rule that
holds during specific time intervals. An example is that
eggs and coffee are frequently sold together in morning
hours. This paper studies temporal association rules dur-
ing the time intervals specified by user-given calendar
schemas. Generally, the use of calendar schemas makes
the discovered temporal association rules easier to under-
stand. An example of calendar schema is (year, month, day),
which yields a set of calendar-based patterns of the form
hd3; d2; d1i, where eachdi is either an integer or the symbol
�. For example,h2000; �; 16i is such a pattern, which cor-
responds to the time intervals, each consisting of the 16th
day of a month in year 2000. This paper defines two types of
temporal association rules: precise-match association rules
that require the association rule hold during every interval,
and fuzzy-match ones that require the association rule hold
during most of these intervals. The paper extends the well-
known Apriori algorithm, and also develops two optimiza-
tion techniques to take advantage of the special properties
of the calendar-based patterns. The experiments show that
the algorithms and optimization techniques are effective.

1. Introduction

Among various types of data mining applications, the
analysis of transactional data has been considered impor-
tant. The notion ofassociation rulewas proposed to capture
the cooccurrence of items in transactions [1]. For example,
given a database of orders (transactions) placed in a restau-
rant, we may have an association rule of the formegg!
coffee(support: 3%, confidence: 80%), which means that
3% of all transactions contain the itemseggandcoffee, and
80% of the transactions that have the itemegg also have
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the itemcoffeein them. The two percentage parameters are
referred to assupportandconfidencerespectively.

An interesting extension to association rules is to include
a temporal dimension. For example, if we look at a database
of transactions in a supermarket, we may find thatturkey
andpumpkin pieare seldom sold together. However, if we
only look at the transactions in the week before Thanksgiv-
ing, we may discover that most transactions containturkey
andpumpkin pie, i.e., the association rule “turkey! pump-
kin pie” has a high support and a high confidence in the
transactions that happen in the week before Thanksgiving.

The above suggests that we may discover different asso-
ciation rules if different time intervals are considered. Some
association rules may hold during some time intervals but
not during others. Discovering temporal intervals as well as
the association rules that hold during the time intervals may
lead to useful information. For example, by considering
each IP packet in a computer network as a transaction and
the attributes in the IP header as items in the transaction,
we can use temporal association rules to represent normal
network activities in different time periods of a day; attacks
to the network may be flagged when the network behaves
differently from its normal behaviors.

Informally, we refer to the association rules along with
their temporal intervals astemporal association rules. In
this paper, we propose to usecalendar schemasas frame-
works to discover temporal association rules. A calendar
schema is determined by a hierarchy of calendar units. For
example, a calendar schema can be (year, month, day). A
calendar schema defines a set ofsimple calendar-based pat-
terns (or calendar patternsfor short). For example, given
the above calendar schema, we will have calendar patterns
such asevery day of January of 1999andevery 16th day
of January of every year. Basically, a calendar pattern is
formed for a calendar schema by fixing some of the cal-
endar units to specific numbers while leaving other units
“free” (so it’s read as “every”). It is clear that each calendar
pattern defines a set of time intervals.

We assume that the transactions are timestamped so we
can decide if a transaction happens during a specific time



interval. Given a set of transactions and a calendar schema,
our first interest is to discover all pairs of association rule
and calendar pattern such that for each pair(r; e), the as-
sociation ruler satisfies the minimum support and confi-
dence constraint among all the transactions that happen dur-
ing each time interval given by the calendar patterne. For
example, we may have an association ruleturkey! pump-
kin pie along with the calendar patternevery day in every
November. We call the resulting rulestemporal association
rules w.r.t. precise match.

In some applications, the above temporal association
rules may be too restrictive. Instead, we may require that
the association rule hold during “enough” number of inter-
vals given by the corresponding calendar pattern. For ex-
ample, the association ruleturkey! pumpkin piemay not
hold on every day of every November, but holds on more
than80% of November days. We call such rulestemporal
association rules w.r.t. fuzzy match.

Our data mining problem is to discover from a set
of timestamped transactions all temporal association rules
w.r.t. precise or fuzzy match for a given calendar schema.
We extend an existing algorithm,Apriori [2], to discover all
such temporal association rules. In addition, based on the
observation that the calendar patterns formed from a calen-
dar schema are not isolated but related to each other, we de-
velop two optimization techniques calledtemporal aprior-
iGenandhorizontal pruning, which can be applied to both
classes of temporal association rules with some adaptation.

Our contribution in this paper is two-fold. First, we de-
velop a new representation mechanism for temporal associ-
ation rules based on calendars and identify two classes of
interesting temporal association rules. Our representation
requires less prior knowledge than the previous methods
and the resulting rules are easier to understand. Second, we
extendApriori and develop two optimization techniques to
discover both classes of temporal association rules. Experi-
ments show that our optimization techniques are effective.

The rest of the paper is organized as follows. The next
section defines temporal association rules in terms of cal-
endar patterns. Section 3 extendsApriori to discover large
itemsets for temporal association rules and presents our op-
timization techniques. Section 4 presents the experimental
evaluation of our algorithms. Section 5 describes the related
work, and section 6 concludes the paper.

2 Problem Formulation

2.1 Simple Calendar-based Pattern

A calendar schemais a relational schemaR = (Gn :
Dn; Gn�1 : Dn�1; : : : ; G1 : D1) with a valid constraint.
Each attributeGi is a granularity name like year, month
and week. Each domainDi is a finite subset of the positive

integers. The constraintvalid is a Boolean function onDn�
Dn�1 � � � � � D1, specifying which combinations of the
values inDn�Dn�1�� � ��D1 are “valid”. The purpose is
to exclude the combinations that we are not interested in or
that do not correspond to any time intervals. For example, if
we do not want to consider the weekend days and holidays,
we can letvalid evaluate to False for all such days. For
brevity, we omit the domainsDi and/or the constraintvalid
from the calendar schema when no confusion arises.

Given a calendar schemaR = (Gn : Dn; Gn�1 :
Dn�1; : : : ; G1 : D1), a simple calendar-based pattern(or
calendar patternfor short) on R is a tuple of the form
hdn; dn�1; : : : ; d1i, where eachdi is inDi or the wild-card
symbol�. The calendar patternhdn; dn�1; : : : ; d1i repre-
sents the set of time intervals intuitively described by “the
dth1 G1 of the dth2 G2, : : :, of dthn Gn.” If di is the wild-
card symbol ‘*’, then the phrase “thedthi ” is replaced by
the phrase “every”. For example, given the calendar schema
(week, day, hour), the calendar patternh�; 1; 10imeans “the
10th hour on the first day (i.e., Monday) of every week”.
Each calendar pattern intuitively represents the time inter-
vals given by a set of valid tuples inDn�Dn�1�� � ��D1.

We say a calendar patterne coversanother calendar pat-
tern e0 in the same calendar schema if the set of time in-
tervals ofe0 is a subset of the set of intervals ofe. For
example, given the calendar schema(week; day; hour),
h1; �; 10i covers h1; 1; 10i. It is easy to see that for a
given calendar schema(Gn; Gn�1; � � � ; G1), a calendar
patternhdn; dn�1; � � � ; d1i covers another calendar pattern
hd0n; d

0

n�1; � � � ; d
0

1i if and only if for eachi, 1 � i � n,
eitherdi = ‘*’ or di = d0i.

For simplicity, we require that in a calendar schema
(Gn; Gn�1; : : : ; G1), each unit ofGi is contained in a unit
of Gi+1 for 1 � i < n. For example,(month; day) is
allowed since each day is contained a unique month. How-
ever, the schema(year;month; week) is not allowed be-
cause aweek may not be contained in a uniquemonth.

For the sake of presentation, we call a calendar pattern
with k wild-card symbols ak-star calendar pattern(de-
notedek), and a calendar pattern with at least one wild-card
symbol astar calendar pattern. In addition, we call a calen-
dar pattern with no wild-card symbol (i.e., a 0-star calendar
pattern) abasic time intervalif the combination is “valid”.

2.2 Temporal Association Rules

Let us first review the concept of association rule, which
was originally presented in [1]. LetI denote a set of data
items. Bothtransactionand itemsetare defined to be sub-
sets ofI. Given a setT of transactions, anassociation rule
of the formX ! Y is a relationship between the two dis-
joint itemsetsX andY . An association rule satisfies some
user-given requirements. Thesupportof an itemset by the



set of transactions is the fraction of transactions that contain
the itemset. An itemset is said to belarge if its support ex-
ceeds a user-given thresholdminsupport. Theconfidence
of X ! Y overT is the fraction of transactions contain-
ing X that also containY . The association ruleX ! Y

holds in T if X [ Y is large and its confidence exceeds a
user-given thresholdminconfidence.

We assume that each transaction is associated with a
timestamp(e.g., November 1, 2000). Given a basic time
intervalt (or a calendar patterne) on a calendar schema, we
denote the set of transactions whose timestamps are covered
by t (or e) asT [t] (or T [e]).

Syntactically, atemporal association rule over a calen-
dar schemaR is a pair(r; e), wherer is an association rule
ande is a calendar pattern onR. However, multiple mean-
ingful semantics can be associated with temporal associa-
tion rules. For example, given a set of transactions, one
may be interested in the association rules that hold in the
transactions on each Monday, or the rules that hold on more
than 80% of all Mondays, or the rules that hold in all trans-
actions on all Mondays (i.e., consider the transactions on
all Mondays together). In the following, we identify two
classes of temporal association rules on which we focus in
this paper. Other kinds of temporal association rules may be
interesting, but we consider them as possible future work.

Temporal Association Rules w.r.t. Precise Match
Given a calendar schemaR = (Gn; Gn�1; � � � ; G1) and a
setT of timestamped transactions, a temporal association
rule (r; e) holds w.r.t. precise matchin T if and only if the
association ruler holds inT [t] for each basic time interval
t covered bye. For example, given the calendar schema
(year;month; Thursday), we may have a temporal asso-
ciation rule (turkey! pumpkin pie, h�; 11; 4i) that holds
w.r.t. precise match. This rule means that the association
rule turkey! pumpkin pieholds on all Thanksgiving days
(i.e., the 4th Thursday in November of every year).

Temporal Association Rules w.r.t. Fuzzy Match
Given a calendar schemaR = (Gn; Gn�1; � � � ; G1), a
setT of timestamped transactions, and a real numberm

(0 < m < 1, calledmatch ratio), a temporal association
rule (r; e) holds w.r.t. fuzzy matchin T if and only if for
at least100m% of the basic time intervalst covered bye,
the association ruler holds inT [t]. For example, given the
calendar schema(year;month; day) and the match ratio
m = 0:8, we may have a temporal association rule (turkey
! pumpkin pie, h�; 11; �i) that holds w.r.t. fuzzy match.
This means that the association ruleturkey! pumpkin pie
holds on at least 80% of the days in November.

Given a calendar schema, we want to discoverall inter-
esting association rules withall their calendar patterns w.r.t
precise match and fuzzy match respectively. Note that in
many cases, we are not interested in the association rules
that only hold during basic time intervals.

3 Finding Large Itemsets

3.1 Overview of Our Algorithms

Mining temporal association rules can be decomposed
into two steps: (1) finding all large itemsets for all star cal-
endar patterns on the given calendar schema, and (2) gen-
erating temporal association rules using the large itemsets
and their calendar patterns. The first step is the crux of the
discovery of temporal association rules; in the following,
we will focus on this problem. The generation of tempo-
ral association rules from large itemsets and their calendar
patterns is straightforward and can be resolved using the
method discussed in [2].

The algorithmApriori consists of a number of passes.
During passk, the algorithm tries to find largek-itemsets
Lk (i.e., itemsets withk items that have at least the min-
imum support) from a set of candidates,Ck, through
counting the support of each candidate against the entire
database. The set of candidates,Ck , is generated from the
set of large (k-1)-itemsets,Lk�1, ensuring that all(k � 1)-
item subsets of each candidate inCk are inLk�1.

We extendApriori [2] to discover large itemsets w.r.t.
precise and fuzzy match. When precise match is consid-
ered, the input of our algorithms consists of a calendar
schemaR, a setT of timestamped transactions, and a min-
imum supportminsupport. When fuzzy match is consid-
ered, an additional input, a match ratiom, is given. De-
pending on the data mining tasks, our algorithms output the
large itemsets for all possible star calendar patterns onR in
terms of precise match or fuzzy match.

Figure 1 shows the outline of our algorithms. (This out-
line is generic for both precise and fuzzy match as well
as with and without our optimization techniques discussed
later. For different algorithms, appropriate procedures will
be supplied.) The algorithms work in passes. In each pass,
the basic time intervals in the calendar schema are pro-
cessed one by one. During the processing of basic time
interval e0 in passk, the set of largek-itemsetsLk(e0) is
first computed, and thenLk(e0) is used to update the large
k-itemsets for all the calendar patterns that covere0.

The first pass is specially handled. In this pass, we com-
pute the large 1-itemsets for each basic time interval by
counting the supports of individual items and comparing
their supports withminsupport. In the subsequent passes,
we divide the processing of each basic time interval into
three phases. Phase I generates candidate large itemsets
for the basic time interval. Phase II reads the transactions
whose timestamps are covered by the basic time interval,
updates the supports of the candidate large itemsets, and
discovers large itemsets for this basic time interval. Phase
III uses the discovered large itemsets to update the large
itemsets for each star calendar pattern that covers the basic



(1) forall basic time intervalse0 do begin
(2) L1(e0) = flarge 1-itemsets inT [e0]g
(3) forall star patternse that covere0 do
(4) updateL1(e) usingL1(e0);
(5) end
(6) for (k = 2; 9 a star calendar patterne such that

Lk�1(e) 6= ;; k ++) do begin
(7) forall basic time intervalse0 do begin

// Phase I: generate candidates
(8) generate candidatesCk(e0);

// Phase II: scan the transactions
(9) forall transactionsT 2 T [e0] do
(10) subset (Ck(e0), T ); // c:count++ if

//c 2 Ck(e0) is contained inT
(11) Lk(e0) = fc 2 Ck(e0)jc:count �

minsupportg;
// Phase III: update for star calendar patterns

(12) forall star patternse that covere0 do
(13) updateLk(e) usingLk(e0);
(14) end
(15) OutputhLk(e); ei for all star calendar patterne.
(16) end

Figure 1. Outline of our algorithms for finding
large k-itemsets

time interval. At the end of each pass, it outputs the set of
largek-itemsetsLk(e) for all star patternse w.r.t. precise or
fuzzy match.

Phase I is the critical step. Indeed, the fewer candidate
large itemsets are generated in phase I, the less time phase
II will take. Several observations can be used to reduce the
number of candidate large itemsets. We will discuss phase
I in detail in the following subsections.

Phase II is performed in the same way as inApriori by
using the candidate large itemsets generated in phase I. We
use ahash treeto store all candidate itemsets for a basic
time intervale0 and scan all transactions inT [e0] to com-
pute their supports. In Figure 1, functionsubset traverses
the hash tree according to transactionT and increments the
supports of the candidate itemsets contained inT . Then the
set of large itemsets fore0 (Lk(e0)) is computed by remov-
ing the itemsets that do not have the minimum support.

Now let us explain phase III. After the basic time interval
e0 is processed in passk, the largek-itemsets for all the
calendar patterns that covere0 are updated as follows. For
precise match, this is done by intersecting the setLk(e0)
of largek-itemset for the basic time intervale0 with the set
Lk(e) of largek-itemsets for the calendar patterne (i.e.,
Lk(e) = Lk(e) \ Lk(e0)). (Certainly,Lk(e) = Lk(e0)
whenLk(e) is updated for the first time.) It is easy to see
that after all the basic time intervals are processed, the set
of largek-itemsets for each calendar pattern consists of the

k-itemsets that are large for all basic time intervals covered
by the pattern.

Update for fuzzy match is a little more complex. We as-
sociate a counterc updatewith each candidate large item-
set for each star calendar pattern. The counters are ini-
tially set to 1. WhenLk(e0) is used to updateLk(e) in
phase III, the counters of the itemsets inLk(e) that are also
in Lk(e0) are incremented by 1, and the itemsets that are
in Lk(e0) but not inLk(e) are added toLk(e) with the
counter set to 1. Suppose there are totallyN basic time
intervals covered bye and this is then-th update toLk(e).
We drop an itemset if its counterc update does not satisfy
c update+(N�n) � m�N . It is easy to see that a dropped
itemset cannot be large fore; on the other hand, if an item-
set remains inLk(e), then its counterc update � m � N
since it is not dropped in the last update.

3.2 Generating Candidate Large Itemsets

3.2.1 Direct-Apriori

A naive approach to generating candidate large itemsets is
to treat each basic time interval individually and directly
apply Apriori’s method for candidate generation. We call
this approachDirect-Apriori (for precise or fuzzy match de-
pending on the context). Phase I ofDirect-Apriori is instan-
tiated as follows.

Ck(e0) = aprioriGen(Lk�1(e0))

Here functionaprioriGen is used to generateCk(e0), the
set of candidate largek-itemsets, from the set of large (k-1)-
itemsets,Lk�1(e0), ensuring that all(k � 1)-item subsets
of each candidate inCk(e0) are inLk�1(e0).

According toApriori [2], the set of candidate largek-
itemsets,Ck(e0), is a super set of all the largek-itemsets
for e0. Thus, phase II of the algorithm will correctly gen-
erate the set of largek-itemsets fore0. By the argument
in subsection 3.1, for each calendar star patterne, Lk(e)
will consist of thek-itemsets that are large (w.r.t. precise
or fuzzy match) fore after all the basic time intervals are
processed.

3.2.2 Temporal-Apriori

Note that in many cases, we may not be interested in the as-
sociation rules that only hold in basic time intervals. Direct-
Apriori does not take this into consideration and thus may
lead to unnecessary data processing. In the following, we
present two optimization techniques, which we calltempo-
ral aprioriGenandhorizontal pruning, to improve the can-
didate generation for situations where temporal association
rules for basic time intervals are not considered. The re-
sulting algorithm is calledTemporal-Apriori(for precise or
fuzzy match according to the context).



Temporal aprioriGenis partially based on the assump-
tion mentioned above. Since we do not need to find the
large itemsets for basic time intervals, we do not need to
count the supports for all the potentially largek-itemsets
generated byCk(e0) = aprioriGen(Lk�1(e0)) for each
basic time intervale0. Indeed, we only need the supports of
the itemsets that are potentially large for some star calendar
patterns that coverse0. In other words, given a basic time
interval e0, if a candidate largek-itemset cannot be large
for any of the star calendar patterns that covere0, we can
ignore it even if it could be large fore0. Therefore, we can
generates candidatesCk(e0) as follows.

Ck(e0) =
S

e covers e0
aprioriGen(Lk�1(e) \ Lk�1(e0))

Example 1 Consider a fuzzy-match temporal association
rule discovery using the calendar schemaR = (week :
f1; � � � ; 5g; day : f1; � � � ; 7g). Suppose we have com-
puted the following large 2-itemsets:L2(h3; 2i) = fAB;
AC; AD; AE; BD; CD; CEg, L2(h�; 2i) = fAB;
AC; AD; BC; BD; CEg, L2(h3; �i) = fAB; AC; AD;
BD; CDg, andL2(h�; �i) = fAB; AD; BD; CD; AC;
AEg. To compute the candidate large 3-itemsets for the
basic time intervalh3; 2i, we first getLT = L2(h�; 2i) \
L2(h3; 2i) = fAB;AC;AD;BD;CEg and then gener-
ateC3(h�; 2i) = aprioriGen(LT ) = fABDg. Similarly,
we can getC3(h3; �i) = fABD;ACDg andC3(h�; �i) =
fABD, ACEg. Then the set of candidate large 3-itemsets
is C3(h3; 2i) = C3(h�; 2i) [ C3(h3; �i) [ C3(h�; �i) =
fABD; ACD; ACEg. 2

The above method works well for both precise and
fuzzy match. (Note that we can useLk�1(e) instead of
Lk�1(e) \ Lk�1(e0) for precise match, sinceLk�1(e) is
a subset ofLk�1(e0).) Moreover, we can improve the can-
didate generation for precise match on the basis of the fol-
lowing Lemma.

Lemma 1 Given a star calendar patterne, an itemset is
large forew.r.t. precise match only if it is large w.r.t. precise
match for all 1-star calendar patterns covered bye.

ConsiderCk(e0), the set of candidate largek-itemset for
e0. We only needCk(e0) to generate large itemsets for pat-
ternse that covere0. According to Lemma 1, an itemset
is large for a given star calendar patterne only if it is large
for all 1-star calendar patterns covered bye. Thus, we can
generate the candidate largek-itemsets (k > 1) for precise
match as follows.

Ck(e0) =
S

e1 covers e0
aprioriGen(Lk�1(e1))

Example 2 Consider a precise-match temporal association
rule discovery using the calendar schemaR = (week :
f1; � � � ; 5g; day : f1; � � � ; 7g). Suppose we have the fol-
lowing large 2-itemsets:L2(h3; 2i) = fAB; AC; AD;
AE; BC; BD; CD; CEg, L2(h�; 2i) = fAB; AC;

AD; BC; BD; CEg, andL2(h3; �i) = fAB; AC; AD;
BD; CDg. To compute the candidate large 3-itemsets for
h3; 2i, we will first generateC3(h�; 2i) = fABC;ABDg
and C3(h3; �i) = fABD;ACDg. Then the set of
candidate large 3-itemsets isC3(h3; 2i) = C3(h�; 2i) [
C3(h3; �i) = fABC; ABD; ACDg. In contrast, if we
use Direct-Apriori, we will generate the candidates from
L2(h3; 2i) and have the set of candidate large 3-itemsets as
C 0

3(h3; 2i) = fABC; ABD; ACD; ACE; BCDg. 2

Our second optimization technique,horizontal pruning,
is also based on Lemma 1, but applied during a pass.
We first discuss the precise match case. Consider passk.
For each basic time intervale0, we update (among oth-
ers) Lk(e1) for eache1 that coverse0. After the first
timeLk(e1) is updated, for everye0 processed, we update
Lk(e1) to beLk(e1) \ Lk(e0), i.e., drop the itemsets in
Lk(e1) that do not appear inLk(e0). Hence, after the first
timeLk(e1) is updated,Lk(e1) always contains all the large
k-itemsets fore1 (plus other itemsets that will eventually be
dropped). In other words, at any time of the processing (ex-
cept before the first update), if ak-itemsetl does not appear
in Lk(e1), thenl is not large fore1.

Now we can use the tentativeLk(e1) (i.e., updated at
least once) to prune the candidate largek-itemsets inCk(e0)
as follows. If an itemsetl in Ck(e0) does not appear in
any of the tentativeLk(e1), wheree1 is a 1-star pattern that
coverse0, thenl cannot be large for any star patterne that
coverse0. Indeed, any star patterne coveringe0 must cover
at least one of the 1-star patterns that covere0. Let this
particular 1-star pattern bee01. Sincel is not large for any 1-
star pattern that coverse0, l is not large fore01. By Lemma 1,
l cannot be large fore, and we may dropl fromCk(e0).
Example 3 Let us continue example 2. Suppose when
h3; 2i is being processed, we already haveL3(h�; 2i) =
fABDg andL3(h3; �i) = fABD;ACDg. Then we can
further pruneC3(h3; 2i), which is fABC;ABD;ACDg,
by C3(h3; 2i) = C3(h3; 2i)\ (L3(h�; 2i) [ L3(h3; �i)) =
fABD;ACDg. 2

Horizontal pruningfor precise match cannot be directly
applied to fuzzy match. This is because fuzzy match al-
lows a large itemset to be small forsomebasic time inter-
vals. Nevertheless, a similar idea can be applied to fuzzy
match. The idea is based on the observation that an item-
set is not large for a calendar pattern if it is not large for a
certain number of basic time intervals covered by the pat-
tern. For example, an itemsetl can never be large for 80%
of all Mondays if it is already known not to be large for 20%
of the Mondays. Therefore, we discard the candidate large
itemsets (fore0) that cannot be large for any star patterne
that coverse0 even if these itemsets are large fore0.
Example 4 Let us continue example 1. We already
haveC3(h3; 2i) = fABD; ACD; ACEg. Suppose all
of L3(h�; 2i), L3(h3; �i), and L3(h�; �i) have been up-



dated at least once. Then we can update a copy of
L3(h�; 2i) with C3(h3; 2i) and get the result, for example,
C3(h�; 2i) = fABD;ABEg. If we also getC3(h3; �i) =
fABD;ACDg andC3(h�; �i) = fABDg, thenC3(h3; 2i)
can be pruned asC3(h3; 2i) = C3(h3; 2i) \ (C3(h�; 2i) [
C3(h3; �i) [ C3(h�; �i)) = fABD;ACDg. 2

We prove the correctness of Temporal-Apriori for pre-
cise match as follows. First, we show that the algorithm
has the same output as Direct-Apriori if for eache0, it uses
a super set of the union of largek-itemsets for all 1-star
calendar patterns that covere0. Then we prove the equiv-
alence of Temporal-Apriori and Direct-Apriori by showing
that the set of candidate largek-itemsets used for each basic
time interval in Temporal-Apriori is such a super set. The
correctness of Temporal-Apriori for fuzzy match is proved
similarly. This result is summarized in the following Lem-
mas and Theorems. Please refer to [8] for the details.

Lemma 2 If Temporal-Apriori for precise match uses a su-
per set of

S
e1 covers e0

Lk(e1) as the set of candidate large
k-itemsets for eache0, then it has the same output as Direct-
Apriori for precise match.

Theorem 1 Temporal-Apriori for precise match is equiva-
lent to Direct-Apriori for precise match.

Lemma 3 If Temporal-Apriori for fuzzy match uses a super
set of

S
e covers e0

Lk(e) as the set of candidate largek-
itemsets for eache0, then it has the same output as Direct-
Apriori for fuzzy match.

Theorem 2 Temporal-Apriori for fuzzy match is equivalent
to Direct-Apriori for fuzzy match.

4 Experiments

To evaluate the performance of our algorithms and opti-
mization techniques, we performed a series of experiments
using both a real-world data set (KDD Cup 2000 [7]) and
synthetic data sets. Due to space reasons, we only report
the results on the synthetic data sets in this paper. A de-
tailed description of the experiments is available in [8].

In order to generate data sets with various characteris-
tics, we extend the data generator proposed in [2] to in-
corporate temporal features. For each basic time interval
e0 in a given calendar schema, we first generate a set of
maximal potentially large itemsets calledper-interval item-
setsand then generate transactionsT [e0] from per-interval
itemsets following the exact method in [2]. Specifically,
the sizes of each transaction and each per-interval itemset
are picked from Poisson distribution with mean� equal to
jT j and jI j respectively. Each per-interval itemset is gen-
erated by copying a half of its items from its previous one
(the first per-interval itemset is generated totally randomly),
and randomizing the other half. Each per-interval itemset

Notation Meaning Default value
jDj Number of transactions per 10,000

basic time interval
jT j Avg. size of the transactions 10
jIj Average size of the maximal 4

potentially large itemsets
jLj Num. of per-interval itemsets 1,000
N Num. of items 1,000
Pr Pattern-ratio 0.4
Np Num. of star calendar patterns40

per pattern itemset

Figure 2. Parameters for data generation

is also assigned a weight from an exponential distribution
with unit mean. After all per-interval itemsets are gener-
ated, each transaction is formed by incorporating a set of
per-interval itemsets selected according to their weights.

To model the phenomenon that some itemsets may have
temporal patterns but others may not, we choose a subset
of the per-interval itemsets from a common set of itemsets
calledpattern itemsetsshared by all basic time intervals but
generate the others independently for each basic time inter-
val. We use a parameterpattern-ratio, denotedPr, to decide
the percentage of per-interval itemsets that should be cho-
sen from the pattern itemsets.

To decide which pattern itemsets should be used for a ba-
sic time interval, we associate several star calendar patterns
with each pattern itemset. For each basic time interval, we
choose itemsets repeatedly and randomly from the pattern
itemsets until we have enough number of pattern itemsets.
Each time when a pattern itemset is chosen, we use it as a
per-interval itemset if it has a calendar pattern that covers
the basic time interval; otherwise, the itemset is ignored.
We use a parameterNp to adjust this feature such that the
number of calendar patterns assigned to each pattern item-
set conforms to a Poisson distribution with meanNp.

The calendar patterns assigned to pattern itemsets are se-
lected from the space of all star calendar patterns. In order
to model the phenomenon that the calendar patterns cover-
ing more basic time intervals are less possible than those
covering fewer ones, we associate with each calendar pat-
tern a weight, which corresponds to the probability that this
calendar pattern is selected. The weight of a calendar pat-
tern is set to0:5k, wherek is the number of wild-card sym-
bols in the calendar pattern. The weight is then normalized
so that the sum of the weights of all calendar patterns is 1.

Our data generation procedure takes the calendar schema
(year : f1995 � 1999g;month; day) and the parameters
shown in Figure 2. To examine the performance of the al-
gorithms, we generated a series of data sets by varying one
parameter while keeping others at their default values. The
size of the data sets ranges from 739 MB to 5.41 GB.
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(c) Precise match (minsup=0.75%)
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(d) Fuzzy match (m=0.9, minsup=0.75%)
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(f) Precise match (minsup=0.75%)
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(h) Fuzzy match (m=0.9, minsup=0.75%)
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(i) Fuzzy match (m=0.9, minsup=0.75%)
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(j) Fuzzy match (m=0.9, minsup=0.75%)
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Figure 3. Experimental result on synthetic data sets

Figures 3(a) and 3(b) show the effectiveness of our opti-
mization techniques. For precise match, Temporal-Apriori
is 5 to 22 times faster than Direct-Apriori; for fuzzy match,
Temporal-Apriori is 2.5 to 12 times faster than Direct-
Apriori. Figures 3(c) and 3(d) give the total number of
candidate large itemsets for the experiments with the min-
imum support0:75%, showing that the optimization tech-
niques greatly reduced the number of candidates in each

pass. In figures 3(e) through (k), we generate different data
sets by varying parameterPr,Np andm. In all experiments,
Temporal-Apriori performs significantly better than Direct-
Apriori. Figure 3(l) shows that Temporal-Apriori scales
well when the number of transactions grows large.



5 Related Work

Since the concept of association rule was first intro-
duced in [1], discovery of association rules has been ex-
tensively studied. The concept of association rule was also
extended in several ways, including generalized rules and
multi-level rules (e.g., [6]), quantitative rules (e.g., [12]),
and constraint-based rules (e.g., [4]). Among these exten-
sions is the discovery of temporal association rules.

There are several kinds of meaningful temporal associ-
ation rules [3, 5, 10, 9, 11]. The problem of mining cyclic
association rules (i.e., the association rules that occur pe-
riodically over time) has been studied in [9]. Several al-
gorithms and optimization techniques were presented and
shown effective; however, this work is limited in that it
cannot deal with multiple granularities and cannot describe
real-life concepts such asthe first business day of every
month. In [11], the work in [9] was extended to approx-
imately discover user-defined temporal patterns in associ-
ation rules. The work in [11] is more flexible and practi-
cal than [9]; however, it requires user-defined calendar al-
gebraic expressions in order to discover temporal patterns.
Indeed, this is to require user’s prior knowledge about the
temporal patterns to be discovered.

Our work differs from [9] and [11] in that instead of
using cyclic patterns or user-defined calendar algebraic ex-
pressions, we use calendar schema as a framework for tem-
poral patterns. As a result, our approach usually requires
less priori knowledge than [9] and [11] (i.e. we need not
know or describe each individual “interesting” temporal
pattern). In addition, unlike [11], which discover temporal
association rules for one user-defined temporal pattern, our
approach considers all possible temporal patterns in the cal-
endar schema, thus we can potentially discover more tem-
poral association rules.

6 Conclusion and Future Work

In this paper, we proposed two classes of temporal as-
sociation rules,temporal association rules w.r.t. precise
matchand temporal association rules w.r.t. fuzzy match,
to represent regular association rules along with their tem-
poral patterns in terms of calendar schemas. An immedi-
ate advantage is that the corresponding data mining prob-
lem requires less prior knowledge than the prior methods
and hence may discover more unexpected rules. In addi-
tion, we extendedApriori to discover temporal association
rules w.r.t. both precise match and fuzzy match. To deal
with the situation when we are not interested in the tem-
poral association rules involving only basic time intervals
(i.e., time intervals represented by a calendar pattern with
0 wildcard symbols), we developed two optimization tech-
niques by studying the relationships among calendar pat-

terns. Our experiments showed that our optimization tech-
niques are quite effective. Similar optimization techniques
apply to situations where we are only interested in time in-
tervals represented by a calendar pattern with at leastk > 1
wildcard symbols.

The future work includes two directions. First, we would
like to explore other meaningful semantics of temporal as-
sociation rules and extend our techniques to solve the cor-
responding data mining problems. Second, we would like
to consider temporal patterns in other data mining problems
such as clustering.
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