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Abstract the itemcoffeein them. The two percentage parameters are
referred to asupportandconfidenceespectively.

A temporal association rule is an association rule that  An interesting extension to association rules is to include
holds during specific time intervals. An example is that atemporal dimension. For example, if we look at a database
eggs and coffee are frequently sold together in morning of transactions in a supermarket, we may find tluakey
hours. This paper studies temporal association rules dur- andpumpkin pieare seldom sold together. However, if we
ing the time intervals specified by user-given calendar only look at the transactions in the week before Thanksgiv-
schemas. Generally, the use of calendar schemas makemg, we may discover that most transactions contiaikey
the discovered temporal association rules easier to under-andpumpkin pigi.e., the association ruléurkey— pump-
stand. An example of calendar schema is (year, month, day)kin pi€’ has a high support and a high confidence in the
which yields a set of calendar-based patterns of the form transactions that happen in the week before Thanksgiving.
(d3,d», d1), where eacld; is either an integer or the symbol The above suggests that we may discover different asso-
*. For example{2000, «, 16) is such a pattern, which cor-  ciation rules if different time intervals are considered. Some
responds to the time intervals, each consisting of the 16thassociation rules may hold during some time intervals but
day of a month in year 2000. This paper defines two types ofnot during others. Discovering temporal intervals as well as
temporal association rules: precise-match association rules the association rules that hold during the time intervals may
that require the association rule hold during every interval, |ead to useful information. For example, by considering
and fuzzy-match ones that require the association rule holdeach IP packet in a computer network as a transaction and
during most of these intervals. The paper extends the well-the attributes in the IP header as items in the transaction,
known Apriori algorithm, and also develops two optimiza- we can use temporal association rules to represent normal
tion techniques to take advantage of the special propertiesnetwork activities in different time periods of a day; attacks

of the calendar-based patterns. The experiments show thato the network may be flagged when the network behaves
the algorithms and optimization techniques are effective.  differently from its normal behaviors.

Informally, we refer to the association rules along with
their temporal intervals amporal association rulesin
1. Introduction this paper, we propose to usalendar schemaas frame-
works to discover temporal association rules. A calendar
schema is determined by a hierarchy of calendar units. For
Among various types of data mining applications, the example, a calendar schema can yeaf, monthday). A
analysis of transactional data has been considered imporgajendar schema defines a sesiafiple calendar-based pat-
tant. The notion oassociation rulevas proposed to capture  erns (or calendar patterngor short). For example, given
the cooccurrence of items in transactions [1]. For example,he apove calendar schema, we will have calendar patterns
given a database of orders (transactions) placed in a restaus;ch asevery day of January of 19%ndevery 16th day

rant, we may have an association rule of the feggy— of January of every yearBasically, a calendar pattern is
coffee(support: 3%, confidence: 80%), which means that formed for a calendar schema by fixing some of the cal-

3% of all transactions contain the itereggandcoffee and  endar units to specific numbers while leaving other units
80% of the transactions that have the iteggalso have  «free” (so it's read as “every”). Itis clear that each calendar

- pattern defines a set of time intervals.
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interval. Given a set of transactions and a calendar schemaintegers. The constrainglid is a Boolean function of,, x

our first interest is to discover all pairs of association rule D, x --- x Dy, specifying which combinations of the
and calendar pattern such that for each gaje), the as-  valuesinD,, x D,,_ x - - - x Dy are “valid”. The purpose is
sociation ruler satisfies the minimum support and confi- to exclude the combinations that we are not interested in or
dence constraint among all the transactions that happen durthat do not correspond to any time intervals. For example, if
ing each time interval given by the calendar patterr-or we do not want to consider the weekend days and holidays,
example, we may have an association tulkey— pump- we can letvalid evaluate to False for all such days. For
kin pie along with the calendar patteavery day in every  brevity, we omit the domain®; and/or the constrainalid
NovemberWe call the resulting rulemporal association  from the calendar schema when no confusion arises.

rules w.r.t. precise match Given a calendar schem& = (G, : D,,Gp_1

In some applications, the above temporal associationD,,_1,...,G; : D), asimple calendar-based pattefor
rules may be too restrictive. Instead, we may require thatcalendar patternfor short) on R is a tuple of the form
the association rule hold during “enough” number of inter- (d,,,d,,_1,...,d;), where eacld; is in D; or the wild-card
vals given by the corresponding calendar pattern. For ex-symbolx. The calendar patterd,,,d, _1,...,d;) repre-
ample, the association rutarkey — pumpkin piemay not sents the set of time intervals intuitively described by “the
hold on every day of every November, but holds on more di* G, of the dt" G, ..., of dt* G, If d; is the wild-
than80% of November days. We call such rulesmporal card symbol *, then the phrase “thé"” is replaced by
association rules w.r.t. fuzzy match the phrase “every”. For example, given the calendar schema

Our data mining problem is to discover from a set (week, day, hour), the calendar pattésn1, 10) means “the
of timestamped transactions all temporal association rules10th hour on the first day (i.e., Monday) of every week”.
w.r.t. precise or fuzzy match for a given calendar schema.Each calendar pattern intuitively represents the time inter-
We extend an existing algorithrpriori [2], to discover all vals given by a set of valid tuples i, x D,, 1 x - - - x D;.
such temporal association rules. In addition, based on the We say a calendar pattegrcoversanother calendar pat-
observation that the calendar patterns formed from a calentern ¢’ in the same calendar schema if the set of time in-
dar schema are not isolated but related to each other, we detervals ofe’ is a subset of the set of intervals ef For
velop two optimization techniques calléemporal aprior- example, given the calendar schemeeek, day, hour),
iGenandhorizontal pruning which can be applied to both (1, x,10) covers(1,1,10). It is easy to see that for a
classes of temporal association rules with some adaptationgiven calendar schemé&,,,G,_1,---,G1), a calendar

Our contribution in this paper is two-fold. First, we de- pattern(d,,,d,_1,---,d;) covers another calendar pattern
velop a new representation mechanism for temporal associ{d!,, d!,_,,---,d}) if and only if for eachi, 1 < i < n,
ation rules based on calendars and identify two classes okitherd; = “*' or d; = d..
interesting temporal association rules. Our representation For simplicity, we require that in a calendar schema
requires less prior knowledge than the previous methods(G,,,G,,_+,...,G1), each unit ofG; is contained in a unit
and the resulting rules are easier to understand. Second, wef Gy for 1 < i < n. For example(month,day) is
extendApriori and develop two optimization techniques to allowed since each day is contained a unique month. How-
discover both classes of temporal association rules. Experiever, the schem@ear, month, week) is not allowed be-
ments show that our optimization techniques are effective. cause aveek may not be contained in a uniqueonth.

The rest of the paper is organized as follows. The next  For the sake of presentation, we call a calendar pattern
section defines temporal association rules in terms of cal-with % wild-card symbols &-star calendar patterr(de-
endar patterns. Section 3 exterRiziori to discover large  notede;,), and a calendar pattern with at least one wild-card
itemsets for temporal association rules and presents our opsymbol astar calendar patternin addition, we call a calen-

timization techniques. Section 4 presents the experimentaldar pattern with no wild-card symbol (i.e., a 0-star calendar
evaluation of our algorithms. Section 5 describes the relatedpattern) ebasic time intervaif the combination is “valid”.
work, and section 6 concludes the paper.

2.2 Temporal Association Rules
2 Problem Formulation

Let us first review the concept of association rule, which

2.1 Simple Calendar-based Pattern was originally presented in [1]. L&t denote a set of data
items. Bothtransactionanditemsetare defined to be sub-

A calendar schemés a relational schem®& = (G,, : sets ofZ. Given a sef/” of transactions, aassociation rule
D,,Gn—1 : Dp_1,...,G1 : Dy) with avalid constraint. of the form X — Y is a relationship between the two dis-

Each attributed; is a granularity name like year, month joint itemsetsX andY. An association rule satisfies some
and week. Each domaiB; is a finite subset of the positive user-given requirements. Tlseipportof an itemset by the



set of transactions is the fraction of transactions that contain3  Finding Large Itemsets

the itemset. An itemset is said to kzge if its support ex-

ceeds a user-given threshotdnsupport. Theconfidence 31 Overview of Our Algorithms
of X — Y overT is the fraction of transactions contain-

ing X that also contairt’. The association rul&’ — ¥ Mining temporal association rules can be decomposed

Egcladf”i]v;ltfzhé;é d'f Iargif%nd Its confidence exceeds a into two steps: (1) finding all large itemsets for all star cal-
9 meonjraence. _ _endar patterns on the given calendar schema, and (2) gen-
We assume that each transaction is associated with g, 4ting temporal association rules using the large itemsets

timestamp(e.g., November 1, 2000 Given a basic time 5 their calendar patterns. The first step is the crux of the
intervalt (or a calendar patter) on a calendar schema, we  giscovery of temporal association rules: in the following,
denote the set of transactions whose timestamps are coverege will focus on this problem. The generation of tempo-

by (or e) asT[t] (or Te]). o ral association rules from large itemsets and their calendar
Syntactically, @emporal association rule over a calen- patterns is straightforward and can be resolved using the
dar schema is a pair(r, e), wherer is an association rule  method discussed in [2].
ande is a calendar pattern off. However, multiple mean- — The algorithmApriori consists of a number of passes.
ingful semantics can be associated with temporal associapyring passk, the algorithm tries to find larg-itemsets
tion rules. For example, given a set of transactions, oner, (je., itemsets withk items that have at least the min-
may be interested in the association rules that hold in thejyum support) from a set of candidate§y, through
transactions on each Monday, or the rules that hold on moreconting the support of each candidate against the entire
than 80% of all Mondays, or the rules that hold in all trans- yatapase. The set of candidat€s, is generated from the
actions on all Mondays (i.e., consider the transactions Onget of arge §-1)-itemsetsL;_1, ensuring that allk — 1)-
all Mondays together). In the following, we identify two jtem subsets of each candidatedp are inLj,_; .
classes of temporal association rules on which we focus in = \ye extendApriori [2] to discover large itemsets w.r.t.
_this paper. Other kinds qf temporal associz:;\tion rules may beprecise and fuzzy match. When precise match is consid-
interesting, but we consider them as possible future work. ered, the input of our algorithms consists of a calendar
_Temporal Association Rules w.r.t. Precise Match Schemd{, a set7 of timestamped transactions, and a min-
Given a calendar schemfa = (G,,Gp-1,---,G1) and @ imum supportninsupport. When fuzzy match is consid-
set7 of timestamped transactions, a temporal associationered, an additional input, a match ratia, is given. De-
rule (r, e) holds w.r.t. precise matdn 7 if and only if the  pending on the data mining tasks, our algorithms output the
association rule holds in7T[t] for each basic time interval large itemsets for all possible star calendar patterng @m
t covered bye. For example, given the calendar schema terms of precise match or fuzzy match.
(year, month, Thursday), we may have a temporal asso-  Figure 1 shows the outline of our algorithms. (This out-
ciation rule (urkey — pumpkin pie (x,11,4)) that holds jine is generic for both precise and fuzzy match as well
w.r.t. precise match. This rule means that the associationas with and without our optimization techniques discussed
rule turkey — pumpkin pieholds on all Thanksgiving days  |ater. For different algorithms, appropriate procedures will

(i.e., the 4th Thursday in November of every year). be supplied.) The algorithms work in passes. In each pass,
Temporal Association Rules w.rt. Fuzzy Match  the basic time intervals in the calendar schema are pro-
Given a calendar schemR = (G,,Gp-1,---,G1), a cessed one by one. During the processing of basic time

setT of timestamped transactions, and a real numher intervale, in passk, the set of large:-itemsetsLy (eg) is
(0 < m < 1, calledmatch ratig, a temporal association first computed, and thehy(eo) is used to update the large
rule (r,e) holds w.r.t. fuzzy matcim 7 if and only if for k-itemsets for all the calendar patterns that ceyer
at least100m% of the basic time intervals covered bye, The first pass is specially handled. In this pass, we com-
the association rule holds in7t]. For example, giventhe  pute the large 1-itemsets for each basic time interval by
calendar schem@ear, month, day) and the match ratio  counting the supports of individual items and comparing
m = 0.8, we may have a temporal association ruleKey their supports withninsupport. In the subsequent passes,
— pumpkin pie (x, 11, %)) that holds w.r.t. fuzzy match. we divide the processing of each basic time interval into
This means that the association rtuekey— pumpkin pie  three phases. Phase | generates candidate large itemsets
holds on at least 80% of the days in November. for the basic time interval. Phase Il reads the transactions
Given a calendar schema, we want to discalemter- whose timestamps are covered by the basic time interval,
esting association rules widil their calendar patterns w.r.t  updates the supports of the candidate large itemsets, and
precise match and fuzzy match respectively. Note that in discovers large itemsets for this basic time interval. Phase
many cases, we are not interested in the association rulesll uses the discovered large itemsets to update the large
that only hold during basic time intervals. itemsets for each star calendar pattern that covers the basic



(1) forall basic time intervalgo do begin k-itemsets that are large for all basic time intervals covered

2 L (eo) = {large 1-itemsets iff [eo]} by the pattern.
(3) forall star patterns that covereo do Update for fuzzy match is a little more complex. We as-
4 updateL; (e) using L1 (eo);

sociate a counter_updatewith each candidate large item-
set for each star calendar pattern. The counters are ini-
tially set to 1. WhenLy(eo) is used to updatd.;(e) in
phase lll, the counters of the itemsetdip(e) that are also

(5) end

(6) for (k = 2; 3 a star calendar patteensuch that
Lj_1(e) # 0; k + +) do begin

(7) forall basic time intervals, do begin

// Phase I: genera’[e candidates in Lk (60) are incremented by 1, and the itemsets that are
(8) generate candidat€, (eo); in Ly(eg) but not in Ly(e) are added td_;(e) with the

// Phase II: scan the transactions counter set to 1. Suppose there are totéilybasic time
9 forall transactiong” € T [eo] do intervals covered by and this is thex-th update taly (e).
(10) subset( (eo), T); // c.count + + if We drop an itemset if its counterupdate does not satisfy

llc € Cy(eo) is contained iril’ c_update+(N —n) > m-N. Itis easy to see that a dropped
(11) Ly (eo) = {c € Ci(eo)|e-count > itemset cannot be large fer on the other hand, if an item-
minsupport};

set remains in_g(e), then its countec_update > m - N

/I Phase llI: update for star calendar patterns . . .
(12) forall star patterns that covere, do since it is not dropped in the last update.
(13) updateLy, (e) usingLy (eo); . .
(14) end 3.2 Generating Candidate Large Itemsets
(15) Output(Ly(e),e) for all star calendar pattemn
(16) end 3.2.1 Direct-Apriori

A naive approach to generating candidate large itemsets is

Figure 1. Outline of our algorithms for finding to treat each basic time interval individually and directly
large k-itemsets apply Apriori's method for candidate generation. We call

this approaciirect-Apriori (for precise or fuzzy match de-
pending on the context). Phase IRifect-Apriori is instan-

. . ) tiated as follows.
time interval. At the end of each pass, it outputs the set of

largek-itemsetsL; (¢) for all star patterns w.r.t. precise or Ci(eo) = aprioriGen(Ly—1(eo))

fuzzy match. Here functionaprioriGen is used to generai@y(eo), the

Phase | is the critical step. Indeed, the fewer candidateg; o¢ candidate largeitemsets, from the set of large-(L)-
large itemsets are generated in phase I, the less time phaﬁ?emsets,Lk,l( )

il tak Lob : b q q h eo), ensuring that al(k — 1)-item subsets
Il will take. Several observations can be used to reduce t| €5f each candidate 67 (o) are inLy_ (eo).

number of candidate large itemsets. We will discuss phase According toApriori [2], the set of candidate large
lin detail in the following subsections. o itemsets,Ci (eo), is a super set of all the largeitemsets
Phase Il is performed in the same way ag\priori by for eo. Thus, phase Il of the algorithm will correctly gen-
using the candidate large itemsets generated in phase I. Wg4te the set of large-itemsets foreo. By the argument
use ahash treeto store all candidate itemsets for a basic ;, subsection 3.1. for each calendar star patterfiy ()
time intervale, and scan all transactions #eo] to com- il consist of thek-itemsets that are large (w.r.t. precise

pute their supports. In Figure 1, functienbset traverses o fyzzy match) fore after all the basic time intervals are
the hash tree according to transactioand increments the processed.

supports of the candidate itemsets contain€f.ihen the
set of large itemsets feg (L (eo)) is computed by remov-
ing the itemsets that do not have the minimum support.
Now let us explain phase lll. After the basic time interval Note that in many cases, we may not be interested in the as-
eo IS processed in pads the largek-itemsets for all the  sociation rules that only hold in basic time intervals. Direct-
calendar patterns that covey are updated as follows. For  Apriori does not take this into consideration and thus may

3.2.2 Temporal-Apriori

precise match, this is done by intersecting the Isgle) lead to unnecessary data processing. In the following, we
of largek-itemset for the basic time interval with the set present two optimization techniques, which we ¢athpo-
Ly(e) of large k-itemsets for the calendar pattesr(i.e., ral aprioriGenandhorizontal pruningto improve the can-
Li(e) = Lg(e) N Li(ep)). (Certainly, L (e) = Lg(eo) didate generation for situations where temporal association

whenL(e) is updated for the first time.) It is easy to see rules for basic time intervals are not considered. The re-
that after all the basic time intervals are processed, the sesulting algorithm is called@emporal-Apriori(for precise or
of largek-itemsets for each calendar pattern consists of thefuzzy match according to the context).



Temporal aprioriGernis partially based on the assump- AD, BC, BD, CE}, andLy((3,*)) = {AB, AC, AD,
tion mentioned above. Since we do not need to find the BD, CD}. To compute the candidate large 3-itemsets for
large itemsets for basic time intervals, we do not need to (3, 2), we will first generate’;((x,2)) = {ABC, ABD}
count the supports for all the potentially largetemsets  and C3((3,%)) = {ABD,ACD}. Then the set of
generated byC(eg) = aprioriGen(Ly_1(ep)) for each  candidate large 3-itemsets %;((3,2)) = C5((x,2)) U
basic time intervat,. Indeed, we only need the supports of C5((3,*)) = {ABC, ABD, ACD}. In contrast, if we
the itemsets that are potentially large for some star calendause Direct-Apriori, we will generate the candidates from
patterns that coverg. In other words, given a basic time L»((3,2)) and have the set of candidate large 3-itemsets as
interval ey, if a candidate largé-itemset cannot be large  C%((3,2)) = {ABC, ABD, ACD, ACE, BCD}. |

for any of the star calendar patterns that coxgrwe can Our second optimization techniquegrizontal pruning
ignore it even |f_|t could be large far. Therefore, we can  js also based on Lemma 1, but applied during a pass.
generates candidaté€$ (eo) as follows. We first discuss the precise match case. Consider jpass
o For each basic time interval,, we update (among oth-
Cr(€0) = Ue covers e, aprioriGen(Li—1(e) N Li-1(eo)) ers) Li(e1) for eache; that coversey. After the first

time Ly (e;) is updated, for every, processed, we update
Li(e1) to be Li(e1) N Li(eo), i.e., drop the itemsets in
1... dav : {1..--  Suppose we have com- Lk(e1) that do not appear il (eo). Hence, after the first
;Eu,ted ,trfi’foll)éwiné I,argé7§—%temse?§;2((3,2)) — {4B, time Ly (e1 ) is updatedL (e; ) always contains all the large
AC, AD, AE, BD, CD, CE), L((x,2)) = {AB, k-itemsets foe; (plus other |tems§ts that will eventuglly be
AC, AD, BC, BD, CE}, L»((3,%)) = {AB, AC, AD, dropped). In othgrwords, at gny_tlme of the processing (ex-
BD, CD}, andLs((+, %)) = {AB, AD, BD, CD, AC, _cept before the f_lrst update), ifiaitemset! does not appear
AE}. To compute the candidate large 3-itemsets for the in Ly, (e1), thenl is not large fore_l. )
basic time interval3, 2), we first getLy = Lo ((*,2)) N Now we can use the tent_atl\bk(el_) (i.e., updated at
L»((3,2)) = {AB,AC,AD,BD,CE} and then gener- €astonce)to prune the candidate lakgeemsets irC (eo)
ate Cs((x,2)) = aprioriGen(Ly) = {ABD}. Similarly, as follows. If an itemset in Cy(eo) does not appear in

Example 1 Consider a fuzzy-match temporal association
rule discovery using the calendar schefa= (week :

we can get’s((3, %)) = {ABD, ACD} andC;((x, ¥)) = any of the tentativel;,(e1 ), wheree, is a 1-star pattern that
{ABD, ACE}. Then the set of candidate large 3-itemsets COVerseo, thenl cannot be large for any star patterthat
is C5((3,2)) = C3((%,2)) U C5((3,%)) U C3((x,%)) = coversey. Indeed, any star patteercoveringey, must cov_er
{ABD, ACD, ACE}. O at least one of the 1-star patterns that coxger Let this

The above method works well for both precise and particular 1-star pattern bﬁ Sincel is not large for any 1-
fuzzy match. (Note that we can ude._, (e) instead of  Starpatternthatcovees, [ is notlarge fore. By Lemma 1,
Li_1(e) N Li_1(eo) for precise match, sincéj, i (e) is [ cannot be large foz, and we may dropfrom Cj (eo).

a subset ol (eg).) Moreover, we can improve the can- Example 3 Let us continue example 2. Suppose when

didate generation for precise match on the basis of the fol-(3,2) is being processed, we already halig((x,2)) =
lowing Lemma. {ABD} and L3((3,%)) = {ABD,ACD}. Then we can

further pruneCs((3,2)), which is {ABC, ABD, ACD},
by C3(<372>) = C3(<3,2>)ﬂ (L3(<*72>) U L3(<37*>)) =
{ABD, ACD}. m
Horizontal pruningfor precise match cannot be directly
applied to fuzzy match. This is because fuzzy match al-
lows a large itemset to be small feomebasic time inter-
vals. Nevertheless, a similar idea can be applied to fuzzy
match. The idea is based on the observation that an item-
set is not large for a calendar pattern if it is not large for a
certain number of basic time intervals covered by the pat-
tern. For example, an itemsketan never be large for 80%
of all Mondaysiif it is already known not to be large for 20%
of the Mondays. Therefore, we discard the candidate large
Example 2 Consider a precise-match temporal association itemsets (foreo) that cannot be large for any star pattern
rule discovery using the calendar schefa= (week : that covers, even if these itemsets are large gr
{1,---,5},day : {1,---,7}). Suppose we have the fol- Example 4 Let us continue example 1. We already
lowing large 2-itemsets:L,((3,2)) = {AB, AC, AD, have C3((3,2)) = {ABD, ACD, ACE}. Suppose all
AE, BC, BD, CD, CE}, Lo({x,2)) = {AB, AC, of Ls((x,2)), L3((3,%)), and L3({*,*)) have been up-

Lemma 1 Given a star calendar pattern, an itemset is
large fore w.r.t. precise match only if itis large w.r.t. precise
match for all 1-star calendar patterns covereddyy

ConsiderCy(ep), the set of candidate largeitemset for
eo- We only need’; (eg) to generate large itemsets for pat-
ternse that coverey. According to Lemma 1, an itemset
is large for a given star calendar patteranly if it is large
for all 1-star calendar patterns coveredeoyThus, we can
generate the candidate largétemsets £ > 1) for precise
match as follows.

Cr(eo) = Ue, covers e, aPrioriGen(Ly—1(e1))



dated at least once. Then we can update a copy of
L3 ((x,2)) with C3((3,2)) and get the result, for example,
C3({x,2)) = {ABD, ABE}. If we also getC3((3, x)) =
{ABD,ACD} andCs5((x,*)) = {ABD}, thenC5((3,2))
can be pruned aS5((3,2)) = C3((3,2)) N (Cs((*,2)) U
C3((3,%)) U C3((x,%))) = {ABD, ACD}. D

We prove the correctness of Temporal-Apriori for pre-
cise match as follows. First, we show that the algorithm
has the same output as Direct-Apriori if for eagh it uses
a super set of the union of lardeitemsets for all 1-star
calendar patterns that covey. Then we prove the equiv-
alence of Temporal-Apriori and Direct-Apriori by showing
that the set of candidate largatemsets used for each basic
time interval in Temporal-Apriori is such a super set. The
correctness of Temporal-Apriori for fuzzy match is proved
similarly. This result is summarized in the following Lem-
mas and Theorems. Please refer to [8] for the detalils.

Lemma 2 If Temporal-Apriori for precise match uses a su-
persetol,, .overs o, Lk (€1) @s the set of candidate large
k-itemsets for eacky, then it has the same output as Direct-
Apriori for precise match.

Theorem 1 Temporal-Apriori for precise match is equiva-
lent to Direct-Apriori for precise match.

Lemma 3 If Temporal-Apriori for fuzzy match uses a super
set of U, copers oo Lk(€) @s the set of candidate large-
itemsets for eachy, then it has the same output as Direct-
Apriori for fuzzy match.

Theorem 2 Temporal-Apriori for fuzzy match is equivalent
to Direct-Apriori for fuzzy match.

4 Experiments

To evaluate the performance of our algorithms and opti-

Notation | Meaning Default value

|D| Number of transactions per | 10,000
basic time interval

|T| Avg. size of the transactions | 10

|| Average size of the maximal | 4
potentially large itemsets

|L| Num. of per-interval itemsets| 1,000

N Num. of items 1,000

P, Pattern-ratio 0.4

N, Num. of star calendar patterns40
per pattern itemset

Figure 2. Parameters for data generation

is also assigned a weight from an exponential distribution
with unit mean. After all per-interval itemsets are gener-
ated, each transaction is formed by incorporating a set of
per-interval itemsets selected according to their weights.

To model the phenomenon that some itemsets may have
temporal patterns but others may not, we choose a subset
of the per-interval itemsets from a common set of itemsets
calledpattern itemsetshared by all basic time intervals but
generate the others independently for each basic time inter-
val. We use a parametgattern-ratiq denotedP,, to decide
the percentage of per-interval itemsets that should be cho-
sen from the pattern itemsets.

To decide which pattern itemsets should be used for a ba-
sic time interval, we associate several star calendar patterns
with each pattern itemset. For each basic time interval, we
choose itemsets repeatedly and randomly from the pattern
itemsets until we have enough number of pattern itemsets.
Each time when a pattern itemset is chosen, we use it as a
per-interval itemset if it has a calendar pattern that covers
the basic time interval; otherwise, the itemset is ignored.
We use a parametéY, to adjust this feature such that the

mization techniques, we performed a series of experimentsnumber of calendar patterns assigned to each pattern item-

using both a real-world data set (KDD Cup 2000 [7]) and

set conforms to a Poisson distribution with men

synthetic data sets. Due to space reasons, we only report The calendar patterns assigned to pattern itemsets are se-

the results on the synthetic data sets in this paper. A de-

tailed description of the experiments is available in [8].

In order to generate data sets with various characteris-

tics, we extend the data generator proposed in [2] to in-
corporate temporal features. For each basic time interval

lected from the space of all star calendar patterns. In order
to model the phenomenon that the calendar patterns cover-
ing more basic time intervals are less possible than those
covering fewer ones, we associate with each calendar pat-
tern a weight, which corresponds to the probability that this

eo in a given calendar schema, we first generate a set ofcalendar pattern is selected. The weight of a calendar pat-

maximal potentially large itemsets callpdr-interval item-
setsand then generate transactiohg,] from per-interval
itemsets following the exact method in [2]. Specifically,

tern is set td).5*, wherek is the number of wild-card sym-
bols in the calendar pattern. The weight is then normalized
so that the sum of the weights of all calendar patternsis 1.

the sizes of each transaction and each per-interval itemset Our data generation procedure takes the calendar schema

are picked from Poisson distribution with mearequal to

|T| and|I| respectively. Each per-interval itemset is gen-
erated by copying a half of its items from its previous one
(the first per-interval itemset is generated totally randomly),
and randomizing the other half. Each per-interval itemset

(year : {1995 — 1999}, month, day) and the parameters
shown in Figure 2. To examine the performance of the al-
gorithms, we generated a series of data sets by varying one
parameter while keeping others at their default values. The
size of the data sets ranges from 739 MB to 5.41 GB.
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Figure 3. Experimental result on synthetic data sets

Figures 3(a) and 3(b) show the effectiveness of our opti- pass. In figures 3(e) through (k), we generate different data
mization techniques. For precise match, Temporal-Apriori sets by varying parametéy., IV, andm. In all experiments,
is 5 to 22 times faster than Direct-Apriori; for fuzzy match, Temporal-Apriori performs significantly better than Direct-
Temporal-Apriori is 2.5 to 12 times faster than Direct- Apriori. Figure 3(I) shows that Temporal-Apriori scales
Apriori. Figures 3(c) and 3(d) give the total number of well when the number of transactions grows large.
candidate large itemsets for the experiments with the min-
imum support).75%, showing that the optimization tech-
nigues greatly reduced the number of candidates in each



5 Related Work terns. Our experiments showed that our optimization tech-
nigues are quite effective. Similar optimization techniques

Since the concept of association rule was first intro- apply to situations where we are only interested in time in-

duced in [1], discovery of association rules has been ex-tervals represented by a calendar pattern with at least

tensively studied. The concept of association rule was alsowildcard symbols.

extended in several ways, including generalized rules and The future work includes two directions. First, we would

multi-level rules (e.g., [6]), quantitative rules (e.g., [12]), like to explore other meaningful semantics of temporal as-

and constraint-based rules (e.g., [4]). Among these exten-Sociation rules and extend our techniques to solve the cor-

sions is the discovery of temporal association rules. responding data mining problems. Second, we would like
There are several kinds of meaningful temporal associ- to consider temporal patterns in other data mining problems

ation rules [3, 5, 10, 9, 11]. The problem of mining cyclic such as clustering.

association rules (i.e., the association rules that occur pe-

riodically over time) has been studied in [9]. Several al- References
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