
1

Detecting Complex Dependencies in Categorical Data

Tim Oates, Matthew D. Schmill, Dawn E. Gregory and Paul R. Cohen

Computer Science Department, LGRC
University of Massachusetts
Box 34610
Amherst, MA 01003-4610

ABSTRACT Locating and evaluating relationships among values in multiple streams of data is a di�cult

and important task. Consider the data 
owing from monitors in an intensive care unit. Readings from
various subsets of the monitors are indicative and predictive of certain aspects of the patient's state. We

present an algorithm that facilitates discovery and assessment of the strength of such predictive relationships

called Multi-stream Dependency Detection (msdd). We use heuristic search to guide our exploration of the
space of potentially interesting dependencies to uncover those that are signi�cant. We begin by reviewing

the dependency detection technique described in [3], and extend it to the multiple stream case, describing in

detail our heuristic search over the space of possible dependencies. Quantitative evidence for the utility of our
approach is provided through a series of experiments with arti�cially-generated data. In addition, we present

results from the application of our algorithm to two real problem domains: feature-based classi�cation and

prediction of pathologies in a simulated shipping network.

1.1 Dependency Detection

Consider a network of seaports, with ships carrying cargo between the ports according

to a complex schedule. Unforeseen occurrences at a single port or a group of ports, such
as severe weather or mechanical failures, can impact the schedule at adjacent ports. If
the current state of the network can be used to predict future states of the network, it

may be possible to adjust the schedule to minimize adverse e�ects of such unforeseen
occurrences. Similarly, it would be very useful to determine how the future state of a

patient, as indicated by various monitors in an Intensive Care Unit (ICU), depends on the

current state of the patient. Note that data in the form of time series is not required for the
discovery and exploitation of such predictive relationships. Machine learning algorithms

that perform feature-based classi�cation determine how a class label depends on various

subsets of a feature vector. In all of the above examples, the goal is to determine whether

one set of features can be used to predict another set of features. The two sets of features
may be taken from the same source at di�erent times (e.g. ICU monitors), or they may

be taken from di�erent sources with no notion of time (e.g. a feature vector and a class

label). We will revisit both the shipping network and classi�cation examples later in this

paper.

A dependency is an unexpectedly frequent or infrequent co-occurrence of events over
time. Our goal is to �nd dependencies between tokens contained in multiple streams. A

stream is a sequence of values produced over time, and a token is one of the �nite set of

values that a stream can produce. Dependencies across multiple streams may take many

1AI and Statistics V. Edited by F. Flinstone and B. Bunny. c
1995 Me-Me-Me Publishers.



2 Tim Oates, Matthew D. Schmill, Dawn E. Gregory and Paul R. Cohen

forms: perhaps token a in stream 1 predicts token b in stream 2, or perhaps token a

in stream 1 and token c in stream 2 predict token b in stream 2. In general, if stream

j contains tj distinct tokens, there are [
Qn

j=1 tj + 1]2 possible dependencies between two

items.

The dependency detection technique in [3] uses contingency tables to assess the sig-
ni�cance of dependencies in a single stream of data. Let (tp; ts; �) denote a dependency.

Each dependency rule states that when the precursor token, tp, occurs at time step i in

the stream, the successor token, ts, will occur at time step i+ � in the stream with some

probability. When this probability is high, the dependency is strong.

Consider the stream acbabaccbaabacbbacba. Of all 19 pairs of tokens at lag 1 (e.g.
ac, cb, ba, : : : ) 7 pairs have b as the precursor; 6 of those have a as the successor, and

one has something other than a (denoted a), as the successor. The following contingency

table represents this information:

Table(b,a,1) =

a a total

b 6 1 7

b 1 11 12
total 7 12 19

It appears that a depends strongly on b because it almost always follows b and almost
never follows anything else (b). We can determine the signi�cance of each dependency by

computing a G statistic for its contingency table:

G

0
B@

n1 n2 r1
n3 n4 r2
c1 c2 t

1
CA = 2

�
n1 log

n1t

r1c1
+ n2 log

n2t

r1c2
+ n3 log

n3t

r2c1
+ n4 log

n4t

r2c2

�

For example, the contingency table shown above has a G value of 12.38, which is signi�cant
at the .001 level, so we reject the null hypothesis that a and b are independent and

conclude that (b,a,1) is a real dependency.
We extend this technique to the multiple stream case by introducing the concept of a

multi-token. A multi-token represents the value of any or all streams at any given time i.
For a series with n streams, all multi-tokens will have the form < x1; : : : ; xn >, where xj
indicates the value in stream j. In order to support the \any or all" requirement, we add

a special wildcard symbol, *, to the set of values that may appear in each stream. Thus

we can indicate a \don't care" condition by placing an * in the appropriate stream.
For a multi-stream example, consider the following streams:

acBABAccbaabacBAcBAc

baCACAbacbababCAbCAb

The dependency (<b,c>,<a,a>,1) indicated in boldface is signi�cant at the .01 level

with a G value of 7.21. The corresponding contingency table is:

Table(b,a,1) =

<a,a> <a,a> total

<b,c> 4 1 5

<b,c> 2 12 14

total 6 13 19

We now have both syntax and semantics for multi-stream dependencies. Syntactically,

a dependency can be expressed as a triple containing two multi-tokens (a precursor and



Detecting Complex Dependencies in Categorical Data 3

a successor) and an integer (the lag). For each of the n streams, the multi-tokens contain

either a token that may appear in the stream or a wildcard. Dependencies can also be

expressed in the form x!� y where x and y are multi-tokens. Semantically, this says the

occurrence of x indicates or predicts the occurrence of y, � time steps in the future.

1.2 Searching for Dependencies

The problem of �nding signi�cant two-item dependencies can be framed in terms of search.

A node in the search space consists of a precursor/successor pair { a predictive rule. The

goal is to �nd predictive rules that are \good" in the sense that they apply often and are
accurate. The root of the search space is a pair of multi-tokens with the wildcard in all n

positions. For n = 2, the root is < �; � >!< �; � >. The children of a node are generated

by replacing (instantiating) a single wildcard in the parent, in either the precursor or

successor, with a token that may appear in the appropriate stream. For example, the

node < a,* >!< *,x > has both < a,y >!< *,x > and < a,* >!< b,x > as
children.
The rule corresponding to a node is always more speci�c than the rules of its ancestors

and less speci�c than any of its descendants. This fact can be exploited in the search
process by noting that as we move down any branch in the search space, the value in

the top left cell of the contingency table (n1) can only remain the same or get smaller.
This leads to a powerful pruning heuristic. Since rules based on infrequently co-occurring
pairs of multi-tokens (those with small n1) are likely to be spurious, we can establish a
minimum size for n1 and prune the search space at any node for which n1 falls below that

cuto�. In practice, this heuristic dramatically reduces the size of the search space that

needs to be considered.
Our implementation of the search process makes use of best �rst search with a heuristic

evaluation function. That function strikes a tunable balance between the expected num-
bers of hits and false positives for the predictive rules when they are applied to previously
unseen data from the same source. We de�ne aggressiveness as a parameter, 0 � a � 1,

that speci�es the value assigned to hits relative to the cost associated with false positives.

For a given node (rule) and its contingency table, let n1 be the size of the top left cell, let n2
be the size of the top right cell, and let tS be the number of non-wildcards in the successor
multi-token. The value assigned to each node in the search space is S = tS(an1�(1�a)n2).

High values of aggressiveness favor large n1 and thus maximize hits without regard to false

positives. Low aggressiveness favors small n2 and thus minimizes false positives with a

potential loss of hits.
Since the size of the search space is enormous, we typically impose a limit on the

number of nodes expanded. The output of the search is simply a list of the nodes, and

thus predictive rules, generated.

1.3 Empirical Evaluation

In this section we evaluate the performance of the algorithm on arti�cially-generated

data sets. The goal is to answer a variety of questions regarding the behavior of the
algorithm over its domain of applications. Arti�cial data simpli�es this task since the



4 Tim Oates, Matthew D. Schmill, Dawn E. Gregory and Paul R. Cohen

\real" dependencies are known, providing means for distinguishing structure in the data

from noise.

Arti�cial data sets are generated by random sampling and applying a set of probabilistic

structure rules: R = f(P;PrP ; S; P rS)g. Each series is initialized by generating n streams

of length l, sampled randomly from the token set T . Values for n, l, T , and R are deter-
mined by the experiment protocol. Default values are n = 5, l = 100, T = fa,b,c,d,eg,

and R = f(< a,a,*,*,* >; :1; < c,d,d,*,* >; :8); (< * c,c,*,* >; :1; < *,a,a,b,* >

; :8); (< *,*,d,d,* >; :1; < *,*,d,c,b >; :8)g.

Structure is then introduced into this random series in two phases: �rst, seed the pre-

cursors P into each time-slice with probability PrP ; then, whenever a time-slice i matches
the precursor of a rule r, insert the successor into time-slice i+ � with probability PrS(r).

For analysis, we can partition the resulting series into noise and structure by determining

which components are predicted by the dependency rules (P (r); S(r); �) for each structure

rule r 2 R.
In each experiment, we run one or more iterations of the search algorithm for each

experiment condition. Unless di�erent values are speci�ed by the experiment protocol, we
gather 5000 predictive rules with aggressiveness set to 0.5. These rules are post-processed
as described below, and used to make predictions in ten new data sets generated from the

same structure rules. The results are evaluated with respect to two factors: predictive power
(the total number of predictions made) and accuracy (the percentage of the predictions

that were correct). These factors are considered separately for the structure and noise
portions of the data set.

1.3.1 Selecting the Best Dependency Rules

The msdd search algorithm generates a large set of dependencies, from which we would
like to select the most accurate and predictive rules. Since all our experiments depend on
the quality of this selection process, the �rst question we wish to answer is, \what post-

processing strategy will select the best predictive rules?" Although more sophisticated

techniques may be needed to resolve redundancy, the simplest approach is to �lter and
sort the rules, �rst discarding rules that do not conform to certain criteria, and then

ranking them according to some precedence function.
In this experiment, four di�erent �lter criteria are combined with six di�erent sort

functions for a total of 24 experiment conditions. The �lter options discard rules under

the following conditions: (1) never; (2) G not signi�cant at the 0.05 level (G < 3:84); (3)

n1 < 5; and (4) n1 < n2. The remaining rules are then sorted according to one of these
six functions: (1) randomly; (2) the G statistic (computed over the training data); (3) the
number of true instances n1; (4) the approximate number of true predictions n1 � tS; (5)

the percentage of instances that are true n1=(n1+n2); and (6) the approximate percentage

of predictions that are true, n1 � tS=(n1 + n2).
We ran �ve iterations of each condition on data sets with default structure. The results

indicate that the highest predictive power and accuracy are achieved when discarding

rules with fewer than 5 true instances (�lter condition 3), and sorting them according to
the G statistic (sort condition 2). This result is as expected: the rules that remain are

unlikely to be spurious dependencies, and they are applied in order of their signi�cance.



Detecting Complex Dependencies in Categorical Data 5

1.3.2 Comparison of Search Heuristics

Now that we know how to e�ectively use the output of msdd, we can address important

issues regarding the performance of the algorithm. In this experiment, we compare the

performance of the S heuristic (de�ned in Section 1.2) to other heuristics and across

di�erent levels of aggressiveness.
All the search heuristics used in this experiment are based on contingency table analysis

of the dependency rules. In addition to the S heuristic, we also use:

1. A normalized S value S

(n1+n2)(n1+n3)
, where S is normalized by its expected count.

2. The aggressiveness-weighted ratio of hits to false-positives, an1
(1�a)n2

.

3. The aggressiveness-weighted fraction of the instances that are hits, an1
n1+n2

.

The results (which are not included here due to space constraints) con�rm that S is the

best of these heuristics: it produces good accuracy and predictive power while allowing

the user to tune the performance with the aggressiveness parameter; the other heuristics
are not a�ected by tuning. As expected, high aggressiveness favors predictive power while
low values favor accuracy.

1.3.3 E�ects of Inherent Structure

Perhaps the most important question to be resolved is: How strong must a dependency be
in order for it to be found by the algorithm? In practical terms, this involves two issues:
how frequently a dependency occurs and how often the precursor multitoken appears

but the successor multitoken does not. In this experiment, we generated 243 data sets
of default size, with 1, 3, or 5 structure rules spanning all combinations of: precursor

size tP 2 f1; 3; 5g, precursor probability PrP 2 f:1; :2; :3g, successor size tS 2 f1; 3; 5g,

successor probability PrS 2 f:1; :5; :9g.
The results of this experiment are very encouraging. They indicate that the successor

probability is the only limitation on the accuracy of the algorithm, even though the
number of rules, the size and probability of the precursor patterns determine the amount

of structure that is available to be predicted. Further exploration is required to con�rm
these results.

1.3.4 E�ects of Problem Size

The �nal issue to be resolved is the in
uence of the problem size on the performance of the

algorithm. In this experiment, we are primarily concerned with the level of performance

attained for a given number of predictive rules as the problem size increases. Ideally, we
can bound performance as a polynomial function of the input size.

In this experiment, we generate 27 data sets spanning all combinations of: number

of streams n 2 f5; 10; 20g, stream length l 2 f100; 1000; 5000g, and number of tokens

j T j2 f5; 10; 20g. For each data set, we let msdd generate 1000, 5000, 10000, and 20000

predictive rules, with aggressiveness set to 0.5.
This experiment has several interesting results. First, performance actually improves

as the number of tokens increases; intuitively, this is due to the probability of each token

decreasing as their numbers increase. Second, the accuracy of the algorithm is basically



6 Tim Oates, Matthew D. Schmill, Dawn E. Gregory and Paul R. Cohen

constant as the stream length increases. This is due to the probability distributions re-

maining constant as the length increases. The time requirement of the algorithm does

increase with stream length. Finally, it appears that msdd need only generate n � 1000

search nodes to discover the signi�cant dependencies; this is a very strong claim that

needs to be supported by further experimentation.

1.4 Applications

Recall two of the example applications from the introduction that were used to motivate

our discussion of msdd: feature-based classi�cation and predicting the state of a shipping
network. In this section we discuss the performance of msdd on both of those tasks.

1.4.1 Feature-Based Classi�cation

In the interest of generality, we applied msdd to a task for which it was not explicitly de-

signed: feature-based classi�cation. We present results for thirteen datasets from the UC
Irvine collection. Twelve of those datasets were selected from a list of thirteen presented

in [9] as being a minimal representative set that covers several important features that
distinguish problem domains. The precursor multi-tokens were n-ary feature vectors and

the successor \multi-tokens" contained only the class label. These pairs of multi-tokens
serve as input to the msdd algorithm. The results are presented below in Table 1.1. The
accuracy shown in the table is the mean obtained over ten trials where the data was ran-
domly split on each trial into a training set containing 2/3 of the instances and a test set

containing the remaining 1/3. The exceptions are NetTalk (training data was generated
from a list of the 1000 most common English words, and accuracy was tested on the full

20,008 word corpus), Monks-2 (a single trial with 169 training instances and 432 test in-

stances to facilitate comparison with results contained in [7]), Soybean (a single trial with
307 training instances and 376 test instances), and Mushroom (500 training instances and
7624 test instances). We compared msdd's performance with other published results for
each dataset [2, 4, 7, 8]. On ten datasets for which we had multiple published results,

msdd performance exceeds half of the reported results on six datasets. Only on the Soy-
bean dataset did msdd perform badly. Nearly all of the 20,000 search nodes generated
for that dataset were devoted to predicting a single majority class. An unusually large

number of highly accurate rules for predicting that class exist, and were therefore found
and expanded by the search algorithm. Due to the high branching factor of the Soybean

dataset (it contains 35 attributes), the node limit on the search tree was quickly reached.
We are currently exploring solutions to this problem. For a more complete comparison

than that shown in Table 1.1, refer to [5].

1.4.2 Pathology Prediction

We applied msdd to the task of predicting pathologies in a simulated shipping network

called TransSim. When several ships attempt to dock at a single port at the same time,
most will be queued to await a free dock, resulting in a bottleneck. We built a pathology

demon that predicts the potential for bottlenecks before they actually form, and we built

an agent that modi�es the shipping schedule in an e�ort to keep predicted pathologies



Detecting Complex Dependencies in Categorical Data 7

Mean Search Other Results
Data Set Accuracy Nodes from Literature

Breast Cancer 95.15% 10,000 1-nearest neighbor 93.7%
Diabetes 71.33% 10,000 ADAP 76%
Heart Disease 79.21% 20,000 ID3 71.2%; C4 75.8%; back prop 80.6%
Hepatitis 80.77% 10,000 CN2 80.1%; C4 81.2%; Bayes 84.0%
LED-7 70.54% 5,000 CART 71%; C4 72.6%; Bayes 74%
LED-24 71.28% 5,000 CART 70%; NTgrowth+ 71.5%; Bayes 74%
Lymphography 78.16% 15,000 Assistant-86 76%; CN2 82%; Bayes 83%
NetTalk 70.11% 50,000 NetTalk 77%
Monks-2 79.17% 5,000 CN2 69.0%; ID3 69.1%; back prop 100%
Mushroom 99.49% 30,000 GINI 98.6%; Info Gain 98.6%; C4 100%
Soybean 13.83% 20,000 IWN 97.1%
Thyroid 95.46% 20,000
Waveform-40 73.02% 15,000 Nearest neighbor 38%; CART 72%; Bayes 86%

TABLE 1.1. Performance of msdd as a feature-based classi�er on thirteen datasets from the UC Irvine collection.

from materializing. Using the demon as an oracle, we gathered data from a single run

of the simulator and used msdd to generate rules to predict bottlenecks. To assess the
utility of the previously generated rules, we ran ten simulations in each of two conditions;

one with the existing demon and another with the demon replaced by the rules. We used
t tests to determine whether mean costs associated with each simulation were lower in

the demon condition as compared to the rule condition. The results are presented below
in Table 1.2. Note that the number of pathologies predicted (PP) by the demon is almost
twice the number predicted by the rules and, therefore, the agent made about twice as

many schedule modi�cations (SM). However, of the �ve cost measures (QL, IC, CT, SU,
and SD) only SD was signi�cantly lower in the demon condition when compared to the rule

condition. That is, even though the agent is taking a much more active role, performance

is not signi�cantly better. Inspection of execution traces shows that the demon is much
more likely than the rule set to predict short-lived pathologies. The rules are good at
forecasting substantial pathologies, ones that will not go away of their own accord, but
miss the more 
eeting pathologies. Said di�erently, msdd rules are not misled by small,

noisy 
uctuations in the state of the simulation. This behavior is bene�cial when we view
disruption to the original schedule as a cost that we want to minimize.

Cost Demon Mean Rule Mean p Value

PP 184.2 94.6 0.0001
CT 2289.3 2377.9 0.0689
IC 1149.8 1202.1 0.1844
QL 637.7 640.5 0.9177
SD 131.1 141.6 0.0019
SU 188.8 202.2 0.3475
SM 21.6 9.2 0.0001

TABLE 1.2. Comparison of simulation costs using demon and msdd rules for pathology prediction.

This experiment suggests that msdd can discover indicators of pathological states in
TransSim from high level domain information. msdd can identify relevant state infor-
mation to emulate the objective function of an external oracle. One limitation of this

approach, as compared with the demon, is that an initial run of the simulator is required

to gather data to drive the rule generation process. However, the domain knowledge sup-



8 Tim Oates, Matthew D. Schmill, Dawn E. Gregory and Paul R. Cohen

plied to the msdd algorithm was minimal in comparison to the demon.

1.5 Work in Progress

We developed and are currently evaluating an incremental version of the msdd algorithm

called imsdd. msdd is a batch algorithm; all data from the streams must be present

when the search begins. That may not be possible or optimal in cases where learning

about the environment must be interleaved with acting in it, or when structure in the

environment changes over time. Likewise, it may not be possible for agents with bounded

computational resources to process all data in all streams. imsdd sacri�ces the ability to
examine and recount data in batches in order to gain adaptable, any-time behavior.

imsdd takes a data-driven, bottom-up approach to forming rules. As imsdd receives

input, it stores multitoken pairs as fully instantiated words. Tokens in streams that exhibit

no contingent structure are generalized as a move towards representing the data's true

structure. imsdd follows a predict! verify ! generalize! update loop. Based on the
current input multitoken, IMSDD predicts the next multitoken, evaluates that prediction,
uses the input to form new generalizations, and then updates its internal data structures.

The data structure maintained by imsdd is called a precursor tree. Figure 1 shows an
example of such a tree. To update the counts for an input word (a precursor/successor

multi-token pair), the precursor is parsed through the tree to a leaf. Each leaf contains a
successor table that maintains the counts of all tokens that have followed the precursor.
For example, the input word < c; b >< b; a > would be parsed to the leftmost successor
table shown Figure 1, causing the count for b in row 1 to be increased to 3 and the count

for a in row 2 to be increased to 4. Precursors are generalized when paths exist in the

tree that di�er in exactly one position, e.g. < c; b > and < b; b > would generalize to
< �; b >. The successor table for the new path is created by summing the contents of the

successor tables on the paths that were generalized over (see Figure 1). Predictions are
made by parsing the current input multi-token along all applicable paths (multiple paths
are possible with wildcards), gathering the set of most likely successor token values from

each successor table, and choosing the one that maximizes a score similar to the msdd

S value. Two additional mechanisms were implemented to control the size of the data
structure and the search space. First, during IMSDD's selection process to �nd the best
successor to predict, a pruning component selects a �xed number of the worst rated rules

to be excised. Second, rather than parsing a precursor down all possible paths, wildcard

paths are taken with some probability. In e�ect, we randomly sample from the set of

possible paths.
To evaluate imsdd we de�ned the metrics adjusted hit rate (ahr) to be the number

of correct token predictions divided by the number of tokens seeded in the dataset, and

fp-rate (fpr) to be the number of incorrectly predicted tokens divided by the total number

of tokens. The �rst mechanisms we examined were the pruning strategy and the sampling

policy for precursor generalization. We recorded the learning curves generated by imsdd

as we varied the sampling rate and turned pruning on and o�. Figure 2a suggests that
both pruning and sampling have small e�ects. We next explored the e�ects of increasing

n, the number of streams. Figure 2b shows the e�ect of increasing n from 5 to 9. First,

note that the overall slope of the learning curve is similar for all three values of n. Second,



Detecting Complex Dependencies in Categorical Data 9

Successor Counts
1

2

(a 12) (b 2)

(a 3) (b 4) (c 3) (d 4)

Successor Counts
1

2

(a 5)

(a 3) (b 2)
Successor Counts

1

2

(a 17) (b 2)

(a 6) (b 6) (c 3) (d 4)

c

b

b
*

bb

FIGURE 1. An example imsdd precursor tree.

both the onset of the learning curve and the point at which imsdd can account for

100% of the structure di�er are delayed as n increases. The �rst result suggests that the

learning algorithm, when scaled up, might exhibit the same facility for learning rules and

accounting for structure. The second result implies that due to the larger stream size,
there is some degree of di�culty learning good initial generalizations given the higher
dimensional search space.

Training Instances

A
dj

us
te

d 
H

it 
R

at
e

A
dj

. H
it 

R
at

e 
= 

# 
H

its
 / 

# 
Se

ed
ed

 T
ok

en
s

0.5

1

200 400 600 800 1000 1200

[sampling rate,(p)runed or (n)ot(p)runed]

[s=0.2,p]

[s=0.2,np][s=0.5,p]

[s=1.0,p]

[s=1.0,np]
[s=0.5,np]

0.5

1

1000 2000 3000 4000

n=9

n=7

n=5

FIGURE 2. (a) E�ects of sampling and pruning on imsdd learning curves. (b) imsdd learning curves for 5, 7,
and 9 streams.

1.6 Conclusion

In this paper we described how the problem of �nding signi�cant dependencies between
the tokens in multiple streams of data can be framed in terms of search. The notion of
dependencies between pairs of tokens introduced in [3] was extended to pairs of multi-

tokens, where a multi-token describes the contents of several streams rather than just one.

We introduced the Multi-Stream Dependency Detection (msdd) algorithm that performs

a general-to-speci�c best-�rst search over the exponentially sized space of possible depen-
dencies between multi-tokens. The search heuristic employed by msdd strikes a tunable
balance between the expected number of hits and false positives for the dependencies

discovered when they are applied as predictive rules to previously unseen data from the

same source. We presented results from an empirical evaluation of msdd's performance



10 Tim Oates, Matthew D. Schmill, Dawn E. Gregory and Paul R. Cohen

over a wide range of arti�cially generated data. In addition, we applied msdd to the

task of pathology prediction in a simulated shipping network and to a number of classi-

�cation problems from the UC Irvine collection. The results that we obtained are very

encouraging.

We are continuing to evaluate both msdd and imsdd. We are particularly interested in
making quantitative statements about performance bounds of the algorithms as a function

of input characteristics. Also, we are working to remove the need for a �xed sized multi-

token and a �xed time interval between multi-tokens.

Acknowledgments

This work is supported by ARPA/Rome Laboratory under contract #'s F30602-91-C-0076

and F30602-93-C-0010. The U.S. government is authorized to reproduce and distribute
reprints for governmental purposes notwithstanding any copyright notation hereon.

1.7 References

[1] Bennett, K. P. and Mangasarian, O. L. Robust linear programming discrimination of
two linearly inseparable sets. In Optimization Methods and Software 1, 1992, 23-34
(Gordon and Breach Science Publishers).

[2] Holte, Robert C. Very simple classi�cation rules perform well on most commonly
used datasets. In Machine Learning, (11), pp. 63-91, 1993.

[3] Howe, Adele E. and Cohen, Paul R. Understanding Planner Behavior. To appear in

AI Journal, Winter 1995.

[4] Murphy, P. M., and Aha, D. W. UCI Repository of machine learning databases

[Machine-readable data repository]. Irvine, CA: University of California, Department
of Information and Computer Science, 1994.

[5] Oates, Tim. MSDD as a Tool for Classi�cation. Memo 94-29, Experimental Knowl-

edge Systems Laboratory, Department of Computer Science, University of Mas-
sachusetts, Amherst, 1994.

[6] Oates, Tim and Cohen, Paul R. Toward a plan steering agent: Experiments with

schedule maintenance. In Proceedings of the Second International Conference on Ar-
ti�cial Intelligence Planning Systems, pp. 134-139, 1994.

[7] Thrun, S.B. The MONK's problems: A performance comparison of di�erent learning

algorithms. Carnegie Mellon University, CMU-CS-91-197, 1991.

[8] Wirth, J. and Catlett, J. Experiments on the costs and bene�ts of windowing in ID3.

In Proceedings of the Fifth International Conference on Machine Learning, pp. 87-99,

1988.

[9] Zheng, Zijian. A benchmark for classi�er learning. Basser Department of Computer

Science, University of Sydney, NSW.


