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Abstract

We present an efficient indexing method to locate 1-

dimeneional subsequences witbin a collection of sequences,

such that the subsequences match a given (query) pattern

within a specified tolerance. The idea is to map each data

sequence into a small set of multidimensional rectangles

in feature space. Then, these rectangles can be readily

indexed using traditional spatial access methods, like the

R*-tree [9]. In more deteil, we use a sliding window

over the data sequence and extract its features; the result

is a trail in feature space. We propose an efficient and

effective algorithm to divide such trails into sub-trails, which

are subsequently represented by their Minimum Bounding

Rectangles (MBRs). We also examine queries of varying

lengths, and we show how to handle each case efficiently.

We implemented our method and carried out experiments

on synthetic and real data (stock price movements). We

compared the method to sequential scanning, which is the

only obvious competitor. The results were excellent: our

method accelerated the search time from 3 times up to 100

times.

1 Introduction

The problem we focus on is the design of fast searching

methods that will search a database with time-series of

real numbers, to locate subsequences that match a query

subsequence, exactly or approximately. Historical,

temporal [29] and spatio-temporal [5] databaeea will
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benefit from such a facility. Specific applications include

the following:

●

●

financial, marketing and production time series, such

as stock prices, sales numbers etc. In such databases,

typical queries would be ‘jind companies whose stock

prices move similarly’, or ‘find other companies that

have similar sales patterns with our company’, or

‘jind cases in the past that resemble last month’s

sales pattern of our product)

scientific databases, with time series of sensor

data. For example, in weather data [11], geological,

environmental, astrophysics [30] databases, etc., we

want to ask queries of the form, e.g., ‘jind past days

in which the solar magnetic wind showed patterns

similar to today’s pattern’ to help in predictions of

the earth’s magnetic field [30].

Searching for similar patterns in such databases is

essential, because it helps in predictions, hypothesis

testing and, in general, in ‘data mining’ [1, 3, 4] and

rule discovery.

For the rest of the paper, we shall use the following

notational conventions: If S and Q are two sequences,

then:

●

●

●

●

Len(S) denotes the length of S

S[i : j] denotes the subsequence that includes entries

in positions i through j

S[i] denotes the i-th entry of sequence S

D(S, Q) denotes the distance of the two (equal

lerigth) sequences S and Q.

Similarity queries can been clsaaified into two cate-
gories:

. Whole Matching. Given a collection of N data
sequences of real numbers S1, Sa, . . . . SN and a query

sequence Q, we want to find those data aequencee

that are within distance e from Q. Notice that data

and query sequences must have the same length.
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● Subsequence Matching. Given N data sequences

Sl,sz,...,SN of arbitrary lengths, a query sequence

Q and a tolerance e, we want to identify the data

sequences Si (1 < i < N) that cent ain matching

subsequences (i.e. subsequences with distance < c

from Q). Report those data sequences, along with

the correct offsets within the data sequences that best

match the query sequence. (We assume that we are

given a function D(S, Q), which gives the distance of

the sequences S and Q. For example, V() can be the

Euclidean distance.)

The case of ‘whole match’ queries can be handled as

follows [2]: A distance-preserving transform, such as

the Discrete Fourier transform (DFT), can be used

to extract ~ features from sequences (eg., the first

~ DFT coefficients), thus mapping them into points

in the f-dimensional feature space. Subsequently,

any spatial access method (such as R*-trees) can be

used to search for range fapproximate queries. This

approach exploits the assumption that data sequences

and query sequences SH have the same length. Here,

we generalize the problem and present a method to

answer approximate-match queries for subsequences of

arbitrary length Len(Q) . The ideal method should

fulfill the following requirements:

●

●

●

✠

●

it should be fast. Sequential scanning and distance

calculation at each and every possible offset will be

too slow for large databases.

it should be ‘correct’. In other words, it should

return all the qualifying subsequences, without

missing any (i.e., no ‘false dismissals’). Notice

that ‘false alarms’ are acceptable, since they can be

discarded easily through a post-processing step.

the proposed method should require a small space

overhead.

the method should be dynamic. It should be easy to

insert and delete sequences, as well as to append new

measurements at the end of a given data sequence.

the method should handle data sequences of varying

length, as well as queries of varying length.

The remainder of the paper is organized as follows,

Section 2 gives some background material on past
related work, on spatial access methods and on the

Discrete Fourier Transform. Section 3 focuses on

subsequence matching; we propose a new indexing

mechanism and we show how off-th~shelf spatial access

methods (and specifically the R*-tree) can be used.

Section 4 discusses performance results obtained from
experiments on real and synthetic data, which show

the effectiveness of our method. Section 5 summarizes

the contributions of the present paper, giving some

extensions of this technique and outlining some open

problems.

2 Background

To the best of the authors’ knowledge, this is the first

work that examines indexing methods for approximate

subsequence matching in time-series databases. The

following work is related, in different respects:

indexing in text [13] and DNA databases [6]. Text

and DNA strings can be viewed as l-dimensional

sequences; however, they consist of discrete symbols

w opposed to continuous numbers, which makes a

difference when we do the feature extraction.

‘whole matching’ approximate queries on time-

sequences [2] or on color images [14, 21] or even on

3-d MRI brain scans [8]. In all these methods, the
idea is to use f feature extraction functions to map

a whole sequence or image into a point in the (d-

imensional) feature space [18]; then, spatial access

methods may be used to search for similar sequences

or images. The resulting index that contains points

in feature space is called F – iradez [2].

The F-index works as follows: Given N sequences, all

of the same length n, we apply the n-point Discrete

Fourier Transform (DFT) and we keep the first few

coefficients. Let’s assume that we keep f numbers -

thus, each sequence is mapped into a point in an f-

dimensional space. These points are organized in an

R*-tree, for faster searching. In the typical query, the

user specifies a query sequence Q (of length n again) and

a tolerance c, requesting all the data sequences that are

within distance e from Q. To resolve this query, (a) we

apply the n-point DFT on the sequence Q, we keep the

f features, thus mapping Q into a f-dimensional point

~t in feature space; (b) we use the F-index to retrieve
all the points within distance c from qf; (c) we discard

the false alarms (see more explanations in Lemma 1),

and we return the rest to the user.

Here, we generalize the ‘F-index’ method, which was

designed to handle ‘whole matching’ queries, Our goal

is to handle subsequence queries, by mapping data se-
quences into a few rectangles in feature space. Since we

rely on spatial access methods as the eventual indexing

mechanism, we mention that several multidimensional

indexing methods have been proposed, forming three

classes: R*-trees [9] and the rest of the R-tree family

[15, 17, 28]; linear quadtrees [26, 24]; and grid-files [22].

To guarantee that the ‘F-index’ method above does

not result in any false dismissals, the dist ante in feature

space should match or underestimate the distance

between two objects. Mathematically, let 01 and 02 be
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two objects (e.g., same-length sequences) with distance

fUIICtiOII Dobject () (e.g., the Euclidean distance) and
F(O1), 17(02) be their feature vectors (e.g., their

first few Fourier coefficients), with distance function

~;y~e,() (e.g., the Euclidean distance, again). Then

Lemma 1 To guarantee no false dismissals for range

queries, the feature extraction function F() should

satisfy the following formula:

Djeawre(F(@), F(02)) < ~object(@> 02) (1)

Proofl Let Q be the query object, O be a qualifying

object, and c be the tolerance. We want to prove that

if the object O qualifies for the query, then it will be

retrieved when we issue a range query on the feature

space. That is, we want to prove that

~object(Q~ 0) < ~ ~ D~eature (F(Q), F(0)) < e (2)

However, this is obvious, since

Djeata~.(l’(Q)j F(o))< Dobj~~t(Q, 0) < ‘ (s)

D

Following [2], we use the Euclidean distance as the

distance function between two sequences, that is, the

sum of squared differences. Formally, for two sequences

S and Q of the same length 1, we define their distance

D(S, Q) as

(
1/2

D(S, Q) s ~(S[~ - Q[i])2

i=l )

(4)

As an example of feature extraction function F() we

choose the Discrete Fourier llansform (DFT), for two

reasons: (a) it has been used successfully for ‘whole

matching’ [2] and (b) it provides a good, intuitive

example to make the presentation more clear. It should

be noted that our method is independent of the specific

feature extraction function F(), as long as F() satisfies
the condition of Lemma 1 (Eq. 1). If the distance among

objects (data sequences) is the Euclidean distance, the

condition of Lemma 1 is satisfied, by any orthonormal

transform, such as, the Discrete Cosine transform

(DCT) [31], the wavelet transform [25] etc. Next, we

give the definition and some properties of the DFT

transformation.

The n-point Discrete Fourier !fkansform [16, 23] of

asignal~= [~i]l i = 0, ...,1-1 is defined to be a
.

sequence X of n complex numbers XF, F = 0, ..., n – 1,

given by

n-1

XF = l/fi~zi exp(-j2~Fi/n) F = 0,1,.. .,n– 1
i=O

(5)

where j is the imaginary unit j = H. The signal Z

can be recovered by the inverse transform:

n-1

Zi=l/@~xFeXp(jzZF~/~) iDO, l,. ..,l–l

F=o
(6)

X~ is a complex number (with the exception of X.,

which is a real, if the signal E is real). The energy E(Z)

of a sequence Z is defined as the sum of energies (squares

of the amplitude [Zi 1) at every point of the sequence:

A fundamental observation for the correctness of our

method is Parseval’s theorem [23], which states that the

DFT preserves the energy of ~ signal:

Theorem (Parseval). Let X be the Discrete Fourier

Transform of the sequence &. Then we have:

n-1

~ lzi12= ~ IXF12 (8)
i=O F=o

Since the DFT is a linear transformation [23], Parseval’s

theorem implies that the DFT also preserves the

Euclidean distance between two signals F and @

9(5, y) = qi, i) (9)

where ~ and ~ are Fourier transforms of & and J

respectively.

We keep the first few (2-3) coefficients of the DFT as

the features, following the recommendation in [2]. This

‘truncation’ results in under-estimating the distance of

two sequences (because we ignore positive terms from

equation 4) and thus it introduces no false dismissals,

according to Lemma 1.

The truncation will introduce only false alarms,

which, for practical sequences, we expect to be few. The

reason is that most real sequences fall in the class of

‘colored noise’, which has a skewed energy spectrum,

of the form O(F(- b]). This implies that the first few

coefficients contain most of the energy. Thus, the

first few coefficients give good estimates of the actual

distance of the two sequences. For b = 1, we have the

pink noise, which, according to Birkhoff’s theory [2~

models signals like musical scores and other works of

art. For b = 2, we have the brown noise (also known

as random walk or brownian walk) which models stock

movements and exchange rates (eg., [10, 20]). For b >2
we have the black noise whose spectrum is even more

skewed than the spectrum of brown noise; black noise

models successfully signals like the water level of a river

as it varies over time [20].
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Symbols Definitions.

N Number of data sequences.

Si The i-th data sequence (1 < i < N).

Len(S) Length of sequence S.

S[k] Thek-the entry of sequence S.

S[i : j] Subsequence of S, including entries in

positions i through j.

Q A query sequence.

w Minimum query sequence length.

V(Q, S) (Euclidean) distance between sequences

Q and S of equal length.

Tolerance (max. acceptable distance).

; Number of featurea.

me Marginal cost of a point.

Table 1: Summary of Symbols and Definitions

This concludes our discussion on prior work, which

concentrated on ‘whole match’ queries. Next, we

describe in detail how we handie the requests for

matching subsequences.

3 Proposed Method

Here, we examine the problem of subsequence matching.

Specifically, the problem is defined as follows:

●

●

●

We are given a collection of N sequences of real

numbers S1, Sz, SN, each one of potentially different

length.

The user specifies query subsequence Q of length

Len(Q) (which may vary) and the tolerance q

that is, the maximum acceptable dis-similarity (=

distance).

We want to find quickly all the sequences Si ( 1<

i < N), along wit-h the correct offsets k, such’ that

the subsequence S~[k : k+ Len(Q) – 1] matches the

query sequence: D(Q, Si[k : k + Len(Q) – 1]) < E.

The brute-force solution is to examine sequentially every

possible subsequence of the data sequences for a match.
We shall refer to this method by ‘SequentialScan’

method. Next, we describe a method that uses a

small space overhead, to achieve order of magnitudes

savings over the ‘SequentialScan’ method. The main

symbols used through the paper and their definitions

are summarized in Table 1.

3.1 Sketch of the approach - ‘ST-index’

Without loss of generality, we assume that the minimum

query length is w , where w (> 1) depends on the

application. For example, in stock price databases,

analysts are interested in weekly or monthly patterns

because shorter patterns are susceptible to noise [12].

Notice that we never lose the ability to answer shorter

than w queries, because we can always resort to

sequential scanning.

Generalizing the reasoning of the method for ‘whole

matching’, we use a sliding window of size w and place

it at every possible position (offset), on every data

sequence. For each such placement of the window,

we extract the features of the subsequence inside the

window. Thus, a data sequence of length Len(S) is

mapped to a trail in feature space, consisting of

Len(S) -w+l points: one point for each possible offset

of the sliding window. Figure l(a) gives an example

of trails. Assume that we have two sequences, S1 and

Sz (not shown in the figure), and that we keep the first

~=2 features (eg, the amplitude of the first and second

coefficient of the w-point DFT). When the window of

length w is placed at offset=O on S1, we obtain the first

point of the trail Cl; as the window slidee over S1, we

obtain the rest of the points of the trail Cl. The trail

C’z is derived by S2 in the same manner.

Figure 4 gives an example of trails, using a real time-

series (stock-price movements).

One straightforward way to index these trails would

be to keep track of the individual points of each trail,

storing them in a spatial access method. We call

this method ‘1-naive’ method, where ‘I’ stands for

‘Index’ (as opposed to sequential scanning). When

presented with a query of length w and tolerance c,

we could extract the features of the query and search

the spatial access method for a range query with radius

e; the retrieved points would correspond to promising

subsequences; after discarding the false alarms (by

retrieving all those subsequences and calculating their

actual distance from the query) we would have the

desired answer set, Notice that the method will not

miss any qualifying subsequence, because it satisfies the

condition of Lemma 1.

However, storing the individual points of the trail in

an R*-tree is inefficient, both in terms of space as well

as search speed. The reason is that, almost every point

in a data sequence will correspond to a point in the
~-dimensional feature space, leading to an index with

a 1:f increase in storage requirements. Moreover, the

search performance will also suffer because the R-tree

will become tall and slow. As we shall see in the section

with the experiments, the ‘I-naive’ method ended up

being almost twice as slow as the ‘Sequentia/Scan’ .

Thus, we want to improve the ‘l-naive’ method, by

making the representation of the trails more compact.

The solution we propose exploits the fact that

successive points of the trail will probably be similar,
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Figure 1: Example of (a) dividing trails into sub-trails

and MBRs, and (b) grouping of MBRs in larger ones.

because the contents of the sliding window in nearby

offsets will be similar, We propose to divide the trail of

a given data sequence into sub-trails and represent each

of them with its minimum bounding (hyper)-rectangle

(MBR). Thus, instead of storing thousands of points of

a given trail, we shall store only a few MBR.s. More

important, at the same time we still guarantee ‘no false

dismissals’: when a query arrives, we shall retrieve all

the MBRs that intersect the query region; thus, we

shall retrieve all the qualifying sub-trails, plus some false

alarms (sub-trails that do not intersect the query region,

while their MBR does).

Figure l(a) gives an illustration of the proposed
approach. Two trails are drawn; the first curve, labeled

Cl (in the north-west side), haa been divided into three

sub-trails (and MBRs), whereas the second one, labeled

C’2 (in the south-east side), has been divided in five sub-

trails. Notice that it is possible that MBRs belonging

to the same trail may overlap, ss C’2 illustrates.

Thus, we propose to map a data sequence into a set

of rectangles in feature space. This yields significant

improvements with respect to space, as well as with

respect to response time, as we shall see in section

4. Each MBR corresponds to a whole sub-trail,

that is, points in feature space that correspond to

successive positioning of the sliding window on the data

sequences. For each such MBR we have to store

●

●

t,ta,t, t,~d which are the offsets of the first and last

such positioning;

a unique identifier for the data sequence (sequence.id)

and

the extent of the MBR in each dimension

(~l~ow,~l~ig~,~210w,J’2~ig~, . . .).

These MBRs can be subsequently stored in a spatial

access method. We have used R*-trees [9], in which

case these MBRs are recursively grouped into parent

MBRs, grandparent MBR,s etc. Figure l(b) shows how

the eight leaf-level MBRs of Figure l(a) will be grouped

to form two MBRs at the next higher level, assuming

a fanout of 4 (i.e. at moat 4 items per non-leaf node).

Note that the higher-level MBRs may contain leaf-level

MBRs from different data sequences. For example, in

Figure l(b) we remark how the left-side MBR1 contains

a part of the south-east curve C2. Figure 2 shows the

structure of a leaf node and a non-leaf node. Notice

that the non-leaf nodes do not need to carry information

about sequence-id’s or offsets (t,ta,~ and trod).

..... Fl_miq Fl_max .. . .. Level

F2_n@ llmix above leaves

1

Sequmce_id

.. ... T.- T_end 0,.,. Leaf level
Fl_min, Fl_max

F2.* F2_max

Figure 2: Index node layout for the last two levels.

This completes the discussion of the structure of our

proposed index, We shall refer to it by ‘ST-index’ , for

‘Sub-Trail index’. There are two questions that we have
to answer, to complete the description of our method.

● Insertions: when a new data sequence is inserted,

what is a good way to divide its trail in feature space

into sub-trails.
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● Queries: How to handle queries, and especially the

ones that are longer than w.

These are the topics of the next two subsections,

respectively.

Fz

m

1
P;

P2

PI *
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:4
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n
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P8
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P9*

—
F1-

Q <5

P3 $4

c1PI l%

F] -

Figure 3: Packing points using (a) a fixed heuristic (sub-

trail size = 3), and (b) an adaptive heuristic.

3.2 Insertion - Methods to divide trails into

sub-trails

As we saw before, each data sequence is mapped into

a ‘trail’ in feature space. Then the question arising

is: how should we optimally divide a trail in feature

space into sub-trails and eventually MBRs, so that the
number of disk accesses is minimized? A first idea

would be to pack points in sub-trails according to a

pre-determined, fixed number (e.g., 50). However, there

is no justifiable way to decide the optimal value of

this constant. Another idea would be to use a simple
th of the stored sequence for this sub-

trail size (e.g. Len(S) ). However, both heuristics

may lead to poor results. Figure 3 illustrates the

problem of having a pre-determined sub-trail size. It

shows a trail with 9 points, and it assumes that the

Method Description

‘SequentialScan’ Sequential scan of the whole

‘I-naive’

‘I-$xed’

‘I-adaptive’

database.

Search using an ‘ST-index’ with

1 point per sub-trail.

Search using an ‘ST-indez’ with

a fixed number of points per

sub-trail.

Search using an ‘ST-indez’ with

a variable number of points per

sub-trail.

Table 2: Summary of searching methods and descrip-

tions

sub-trail length is 3 (i.e., = @). The resulting MBRs

(Figure 3(a)) are not as good as the MBR.s shown in

Figure 3(b). We collectively refer to all the above

heuristics as the ‘I-fixed’ method, because they use

an index, with some fixed-length sub-trails. Clearly,

the ‘I-naive’ method is a special csse of the ‘I-fixed’

method, when the sub-trail length is set to 1.

Thus we are looking for a method that will be able

to adapt to the distribution of the points of the trail.

We propose to group points into sub-trails by means

of an ‘adaptive’ heuristic, which is based on a greedy

algorithm. The algorithm uses a cost function, which

tries to estimate the number of disk accesses for each

of the options. The resulting indexing method will

be called ‘I-adaptive’. This is the lsst of the four

alternatives we have introduced. Table 2 lists all of

them, along with a brief description for each method.

To complete the description of the ‘I-adaptive ‘method,

we have to define a cost function and the concept of

marginal cost of a point. In [19] we developed a for-

mula which, given the sides ~ = (Ll, L2, . . . Ln ) of the

n-dimensional MBR of a node in an R-tre~, estimates

the average number of disk accesses DA(L) that this

node will contribute for the average range query:

DA(Z) = fi(L~ + 0.5) (lo)
i=l

The formula sssumes that the address space hss been

normalized to the unit hyper-cube ( [0, l)n). We use

the expected number of disk accesses DA() as the cost

function. The marginal cost (me) of a point is defined as

follows: Consider a sub-trail of k points with an MBR of

sizes Ll, ..., Ln. Then the marginal cost of each point

in this sub-trail is

mc = DA(~)/k (11)
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That is, we divide the cost of this MBR equally among

the contained points. The algorithm is then as follows:

/* Algorithm Divide-to-Subtralls */

Assign the first point of the trail in a

FOR

(trivial) sub-trail

each successive point

IF it increases the marginal cost of the

current sub-trail

TliEIl start another sub-trail

ELSE include it in the current sub-trail

3.3 Searching-Queries longer thanw

In the previous subsection we discussed how to insert

a new data sequence in the ‘ST-index’ , using an

‘adaptive’ heuristic. Here reexamine howto search for

subsequences that match the query sequence Q within

tolerance c. If the query is the shortest allowable

(Len(Q) = w), the searching algorithm is relatively

straightforward:

Algorithm ’SearchJ3hort’

the query sequence Q is mapped to a point qj in

feature space; the query corresponds to aspherein

feature space with centerqf andradiuse;

we retrieve thesub-trails whose MBRs intersect the

query region using our index;

then, we examine the corresponding subsequences of

the data sequences, to discard the false alarms.

Notice that the retrieved MBRs of sub-trails is a

superset of the sub-trails we should actually retrieve;

if a sub-trail intersects the query region, its MBR will

definitely do so (while the reverse is not necessarily

true). Thus themethod introduces no false dismissals.

Handling longer queries (Len(Q) > w) is more

complicated. Thereason is that the ‘ST-index’’knows’

only about subsequences of length w. A straightforward

approach would be to select a subsequence (e.g., the

prefix) of Q of length w, and use our ‘ST-indez’ to

search for data subsequences that match the prefix of Q

within tolerance ~. We call this method ‘PrejixSearch’.

This will clearly return a superset of the qualifying

subsequences: a subsequence Tthat is within tolerance

c of the query sequence Q (Len(Q) = Len(T)) will

have all its (sub) subsequences withb tolerance < e from

the corresponding subsequence of Q. In general we can

prove the following lemma:

Lemma 2 If two sequences S and Q with the same

length 1 agree within tolerance c, then any pair (S[i : j],
Q[i : j]) of corresponding subsequences agree within the

same tolerance.

‘D(S, Q)<C ~ 9(S[i:j], Q[i:j])<c (l<i<j<i)

(12)

Proofi Since D() is the Euclidean distance, we have

k=l

Since

~(S[k] - Q[k])2 < ~(S[k] - ~k])z
k=i k=]

we have

D(S[i : j], Q[i : j]) = f’(S[k] – Q[k])2 s c

k=i

which completes the proof.

(13)

(14)

(15)

❑

Using th~ ‘PrefizS;arch’ method, the query region in

feature space is a sphere of radius e, and therefore, it

has volume proportional to cf. Next, we show how to

reduce the volume of the query region and subsequently,

the number of false alarms. Without loss of generality,

we assume that Len(Q) is an integral multiple of w;

if this is not the case, we use Lemma 2 and keep the

longest prefix that is a multiple of w.

Len(Q) = p w (16)

Then, we propose to split the longer query into p

pieces of length w each, process each sub-query and

merge the results of the sub-queries. This approach

takes full advantage of our ‘ST-index’ . Moreover,

as we show, the tolerance specified for each sub-query

can be reduced to c/@. The final result is that

the total query volume in feature space is reduced.

The following Lemma establishes the correctness of the

proposed method. Consider two sequences Q and S of

the same length Len(Q) = Len(S) = p *w. Consider

their p disjoint subsequences q~ = Q[i* w+ 1: (i+ 1) * w]

ands~ = S[i*w+l: (i+l)*w], where O~ i<p–1.

Lemma 3 If Q and S agree within tolerance e then

at least one of the pairs (si, qi) of corresponding sub-

sequences agree within tolerance e~fi:

9(Q, S) < c ~ V:~: (D(q~, S~) < c/@ (17)

where V indicates disjunction.

Proof. By contradiction: If all the pairs of subs~

quences have distance > ej@, then, by adding all these

distances, the distance of Q and S will be > c, which is
a contradiction. More formally, since for i = O, ..., p – 1

(i+l).w

‘Z(qi, ‘i)= ~ (WUI - ‘iLd)2 (18)
j=i*w+l
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we have that

Vi (D(q~, s~) > C/@) +

(
(i+l)*w

Vi

)

~ (!?ihl - ‘iti])’ > e2/P *
j=i*w+l

p*w

X(QUI - shl)’ >p.t2/p= ,2
j=l

or
D(Q, S) > t

which contradicts the hsmothesis.

(19)

(20)

(21)

(22)

❑

The searching algori~hm that uses Lemma 3 will be

called ‘MultiPiece’ search. It works as follows:

Algorithm ‘Search_Long ( ‘MultiPiece’ )’

●

●

●

the query sequence Q is broken in p sub-queries

which correspond to p spheres in feature space with

radius c/~;

we use our ‘ST-indez’ to retrieve the sub-trails

whose MBRs intersect at least one the sub-query

regions;

then, we examine the corresponding subsequences of

the data sequences, to discard the false alarms.

Next, we compare the two search algorithms

( ‘PrefixSearch’ and ‘MultiPiece’ ) with respect to the

volume they require in feature space. The volume of an

f-dimensional sphere of radius c is given by

K ~f (23)

where K is a constant (K = n for a 2-dimensional space,

etc). This is exactly the volume of the ‘R-@Mearch’

algorithm. The ‘MultiPiece’ algorithm yields p spheres,

each of volume proportional to

K(e/@f (24)

for a total volume of

K*p*#/@=K*Ef/#2-1 (25)

This means that the proposed ‘iWultiPiece ’ search

method is likely to produce fewer false alarms, and

therefore better response time than the ‘PrejixSearch’

method, whenever we have j > 2 features.

4 Experiments

We implemented the ‘ST-index’ method using the

‘adaptive’ heuristic ss described in section 3, and we

ran experiments on a stock prices database of 329,000

points, obtained from sf i. sant af e. edu. Each point

was a real number, having a size of 4 bytes. Figure

4(a) shows a sample of 250 points of such a stock price

sequence. The system is written in ‘C’ under AIX, on

an IBM RS/6000. Based on the results of [2], we used

only the first 3 frequencies of the DFT; thus our feature

space has f=6 dimensions (real and imaginary parts of

each retained DFT coefficient). Figure 4(b) illustrates

a trail in feature space: it is a 2-dimensional ‘phase’

plot of the amplitude of the O-th DFT coefficient vs.

the amplitude of the l-st DFT coefficient. Figure 4(c)

similarly plots the amplitudes of the l-st and 2-rid DFT

coefficients. For both figures the window size w was 512

points. The smooth evolution of both curves justifies

our method to group successive points of the feature

space in MBRs. An R*-tree [9] was used to store the

MBRs of each sub-trail in feature space.

We carried out experiments to measure the perfor-

mance of the most promising method: ‘I-adaptive’.

For each setting, we asked queries with variable se-

lectivities, and we measured the wall-clock time on

a dedicated machine. More specifically, query se-

quences were generated by taking random offsets into

the data sequence and obtaining subsequences of length

Len(Q) from those offsets. For each such query se-

quence, a tolerance ~ was specified and the query was

run with that tolerance. This method was followed in

order to eliminate any bias in the results that may be

caused by the index structure, which is not uniform at

the leaf level. Unless otherwise specified, in all the ex-

periments we used w = 512 and Len(Q) = w.

We carried out four groups of experiments, as follows:

(a)

(b)

(c)

(d)

Comparison of the the proposed ‘I-adaptive ‘method

against the ‘I-naive’ method (the method that has

sub-trails, each one consisting of one point).

Experiments to compare the response time of our

method ( ‘1-adaptive’) with sequential scanning for

queries of length w.

Experiments with queries longer than w.

Experiments with a larger, synthetic data set, to

see whether the superiority of our method holds for
other dat asets.

Comparison with the ‘I-naive’ method. Figure

5 illustrates the index size as a function of the length

of the sub-trails for the three alternatives ( ‘1-naive’ ,

‘I-fixed’ and ‘I-adaptive ‘). Our method requires only

5Kb, while the ‘I-naive’ method requires %24 MB. The

‘I-fixed’ method gives varying results, according to the

length of its sub-trails.

The large size of the index for the ‘I-naive’ method

hurts its search performance as well: in our experiments,
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Figure 4: (a) Sample stock-price sequence; (b) its trail in the feature space of the O-th and l-st DFT coefficients and

(c) the equivalent trail of the l-st and 2-rid DFT coefficients
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Figure 5: Index space vs. the average sub-trail length

(log-log scales)

the ‘I-naive’ method was approximately two times

slower than sequentially scanning the entire database.

Response time - ‘Short’ queries. We start examin-

ing our method’s response time using the shortest ac-

ceptable queries, that is, queries of length equal to the

window size (Len(Q) = w). We used 512 points for

Len(Q) and w. Figure 6 gives the relative response

time of the sequential scanning method (Z) vs. our in-

dex assisted method (T,, where r stands for ‘R-tree’),

by counting the actual wall-clock time for each method.

The horizontal axis is the selectivity; both axes are in

logarithmic scales. The query selectivity varies up to

10% which is fairly large in comparison with our 329,000

points time-series database. We see that our method

achieves from 3 up to 100 times better response time

for selectivities in the range from 10-4 to 10%.

We carried out similar experiments for Len(Q) = w
= 256, 128 etc., and we observed similar behavior and

similar savings. Thus, we omit those plots for brevity.

Our conclusion is that our method consistently achieves

large savings over the sequential scanning.

100 , ●

g : ● ● “. . ..” .“ ●*-$,*.:.
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Figure 6: Relative wall clock time VS,

log scale (Len(Q) =w=512 points).

Response time - longer queries.

0.01 0.1

selectivity in log-

Next we examine

the relative performance of the two methods for queries

that are longer than w. As explained in the previous

section, in these cases we have to split the query and

merge the results ( WultiPiece’ method). As illustrated

in Figure 7, again the proposed ‘I-adaptive ‘method

outperforms the sequential scanning, from 2 to 40 times.

Synthetic data. In Figure 8 we examine our tech-

nique’s performance against a time-series database con-

sisting of 500,000 points produced by a random-walk

method. These points were generated with a starting
value of 1.5, whereas the step increment on each step

was + .001. Again we remark that our method outper-

forms sequential scanning from 100 to 10 times approx-

imately for selectivitiea up to 10%.

5 Conclusions

We have presented the detailed design of a method that

efficiently handles approximate (and exact) queries for

subsequence matching on a stored collection of data

sequences. This method generalizes the work in [2],
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Figure 8: Relative wall clock time vs. selectivity for

random walk data in a log-log scale (Len(Q) =w=512

points).

which examined the ‘whole matching’ case (i.e., all

queries and all the sequences in the time-series database

had to have the same length). The idea in the proposed

method is to map a data sequence into a set of boxes in

feature space; subsequently, these can be stored in any

spatial access method, such as the R*-tree.

The main contribution is that we have designed in
detail the fimt, to our knowledge, indexing method for

subsequence matching. The method has the following

desirable features:

●

●

●

it achieves orders of magnitude savings over the se-

quential scanning, as it was showed by our experi-

ments on real data,

it requires small space overhead,

it is dynamic, and

● it is provably ‘correct’, that is, it never misses

qualifying subsequences (Lemmaa 1-3)

Notice that the proposed method can be used with any

set of feature-extraction functions (in addition to DFT),

as well as with any spatial access method that handles

rectangles.

Future work includes the extension of this method for

2-dimensional gray-scale images, and in general for n-

dimensional vector-fields (such as 2-d color images to

answer queries by image content as in [21], or 3-d MRI

brain scans to help detect patterns of brain activation

as discussed in [7] etc.)
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