
Incremental and Interactive Sequence Mining *

S. Parthasarathy, M. J. Zakit, M. Ogihara, S. Dwarkadas
Computer Science Dept., U. of Rochester, Rochester, NY 14627

t Computer Science Dept., Rensselaer Polytechnic Inst., Troy NY 12180

Abstract
The discovery of frequent sequences in temporal databases is an
important data mining problem. Most current work assumes
that the database is static, and a database update requires
rediscovering all the patterns by scanning the entire old and
new database. In this paper, we propose novel techniques for
maintaining sequences in the presence of a) database updates, and
b) user interaction (e.g. modifying mining parameters). This is a
very challenging task, since such updates can invalidate existing
sequences or introduce new ones. In both the above scenarios, we
avoid re-executing the algorithm on the entire dataset, thereby
reducing execution time. Experimental results confirm that our
approach results in execution time improvements of up to several
orders of magnitude in practice.

1 Introduction
Sequence mining is an important data mining task,
where one attempts to discover frequent sequences
over time, of attribute sets in large databases. This
problem was originally motivated by applications in
the retail industry, including attached mailing, add-
on sales and customer satisfaction. It also applies to
many scientific and business domains. For instance, in
the health care industry it can be used for predicting
the onset of disease from a sequence of symptoms, and
in the financial industry it can be used for predicting
investment risk based on a sequence of stock market
events.

Discovering all frequent sequences in a very large
database can be very compute and I/O intensive be-
cause the search space size is essentially exponential
in the length of the longest transaction sequence in it.
This high computational cost may be acceptable when
the database is static since the discovery is done only
once, and several approaches to this problem have been
presented in the literature. However, many domains
such as electronic commerce, stock analysis, collabo-

Contact Author: S. Parthasarathy, sriniOcs.rochester.edu.
This work was SUDDOrted in Dart bv NSF grants CDA-9401142.
CCR-9702466, d&t-9705594, CCR-97Oi911, CCR-9725021;
INT-9726724, and a DARPA grant F30602-98-2-0133; and an
external research grant from Digital Equipment Corporation.

Permission to make digital or hard copies of all’or part of this work for

personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advanl
-age and that copies bear this notice and the full citation on the first page.

To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
CIKM ‘99 1 l/99 Kansas City, MO, USA
0 1999ACM 1.58113-146-1/99/0010...$5.00

rative surgery, etc., impose soft real-time constraints
on the mining process. In such domains, where the
databases are updated on a regular basis and user in-
teractions modify the search parameters, running the
discovery program all over again is infeasible. Hence,
there is a need for algorithms that maintain valid mined
information across i) database updates, and ii) user in-
teractions (modifying/constraining the search space).

Although the incremental [2, 3, 111 and interactive [l]
mining problem has been studied for association rules,
no work has been done for incremental and interac-
tive sequential patterns. In this paper, we present a
method for incremental and interactive sequence min-
ing. Our goal is to minimize the I/O and computation
requirements for handling incremental updates. Our al-
gorithm accomplishes this goal by maintaining informa-
tion about “maximally frequent” and “minimally infre-
quent” sequences. When incremental data arrives, the
incremental part is scanned once to incorporate the new
information. The new data is combined with the “max-
imal” and “minimal” information in order to determine
the portions of the original database that need to be
re-scanned. This process is aided by the use of a verti-
cal database layout - where attributes are associated
with the list of transactions in which they occur. The
result is an improvement in execution time by up to
several orders of magnitude in practice, both for han-
dling increments to the database, as well as for handling
interactive queries.

The rest of the paper is organized as follows. In
Section 2, we formulate the sequence discovery problem.
In Section 3, we describe the SPADE algorithm upon
which we build our incremental approach. Section 4
describes our incremental sequence mining algorithm.
In Section 5, we describe how we support online
querying. An experimental evaluation is presented in
Section 6. We discuss related work in Section 7, and
conclude in Section 8.

2 Problem Formulation

In this section, we define the incremental sequence
mining problem that this paper is concerned with. We
begin by defining the notation we use. Let the items,
denoted 1, be the set of all possible attributes. We
assume a fixed enumeration of all members in Z and
identify the items with their indices in the enumeration.
An itemset is a set of items. An itemset is denoted by
the enumeration of its elements in increasing order. For

251

SEQUENCE LA-t-l-ICE DA-t-ABASE

Figure 1: Original Database
SEQUENCE LAl-IlCE

Figure 2: Original plus Incremental Database and Lattice

an itemset i, its size, denoted by [iI, is the number of
elements in it. An itemset of size k is called a k-itemset.

A sequence is an ordered list (ordered in time) of non-
empty itemsets. A sequence of itemsets cyi, . . . , on is
denoted by (or I+ . . . I+ a,). The length of a sequence
is the sum of the sizes of each of its itemsets. For
each integer k, a sequence of length k is called a k-
sequence. A sequence CK is a subsequence of a sequence
p, denoted by Q 5 /3, if (Y can be constructed from
p by striking out some (or none) of the items in @,
and then by eliminating all the occurrences of 0 c)
and c) 0 one at a time. For example, B ti AC is a
subsequence of AB ti E H ACD. We say that a is
a proper subsequence of /3, denoted cr < p, if o # /3
and CY 5 ,O. For k 13, the generating subsequences of a
length k sequence are the two length k - 1 subsequences
of cr obtained by dropping exactly one of its first or
second items. By definition, the generating sequences
share a common suffix of length k - 2. For example,
the two generating subsequences of Al3 C) CD C) E
are A c-) CD r-) E and B I+ CD I+ E, and they share
the common suffix CD c) E. A sequence is maximal
in a collection C of sequences if the sequence is not a
subsequence of any other sequence in C.

Our database is a collection of customers, each with
a sequence of transactions, each of which is an itemset.
For a database D and a sequence (.II, the support or
frequency of a in D, denoted by support,(is the
number of customers in D whose sequences contain a
as a subsequence. The minimum-support, denoted by

m&-support, is a user-specified threshold that is used
to define “frequent sequences”: a sequence is frequent
in D if its support in D is at least min-support. A rule
A u B involving sequence A and sequence B is said to
have confidence c if c% of the customers that contain
A also contain B. Suppose that new data S is to be
added to a database D. Then we call D the original
database and 6 the incremental database. The updated
database is denoted by D + 6. For each k 2 1, T;
denotes the collection of all frequent sequences of length
k in the updated database. Also FS denotes the set of
all frequent sequences in the updated database. The
negative border (NB) is the collection of all sequences
that are not frequent but both of whose generating
subsequences are frequent. By the old sequences, we
mean the set of all frequent sequences in the original
database and by the new sequences we mean the set of
all frequent sequences in the join of the original and the
increment.

For example, consider the customer database shown
in Figure 1. The database has three items (A,B, C),
and four customers. The figure also shows the Incre-
ment Sequence Lattice (ISL) with all the frequent se-
quences (the frequency is also shown with each node)
and the negative border, when a minimum support
of 75%, or 3 customers, is used. For each frequent
sequence, the figure shows its two generating subse-
quences in bold lines. Figure 2 shows how the frequent
set and the negative border change when we mine over
the combined original and incremental database (high-

252

lighted in dark grey). For example, C is not frequent
in the original database D, but C (along with some of
its supersequences) becomes frequent after the update
6. The update also causes some elements to move from
NB to the new FS.
Incremental Sequence Discovery Problem: Given
an original database D of sequences, and a new incre-
ment to the database 6, find all frequent sequences in
the database D + 6, with minimum possible recompu-
tation and I/O.

3 The SPADE Algorithm
In this section we describe SPADE [13], an algorithm
for fast discovery of frequent sequences, which forms the
basis for our incremental algorithm.
Sequence Lattice: SPADE uses the observation that
the subsequence relation 4 defines a partial order on the
set of sequences, i.e., if /3 & a frequent sequence, then all
subsequences a! 5 /3 are also frequent. The algorithm
systematically searches the sequence lattice spanned by
the subsequence relation, from the most general (single
items) to the most specific frequent sequences (maximal
sequences) in a depth-first manner. For instance, in
Figure 1, the bold lines correspond to the lattice for the
example dataset.
Support Counting: Most of the current sequence
mining algorithms 191 assume a hordzontal database
layout such as the one shown in Figure 1. In
the horizontal format, the database consists of a set
of customers (cid ‘s) . Each customer has a set of
transactions (tid’s), along with the items contained in
the transaction. In contrast, we use a vertical database
layout, where we associate with each item X in the
sequence lattice its idlist, denoted C(X), which is a
list of all customer (cid) and transaction identifier (tid)
pairs containing the item. For example, the idlist for
the item C in the original database (Figure 1) would
consist of the tuples { < 2,20 >, < 2,30 >}.

Given the per item idlists, we can iteratively deter-
mine the support of any L-sequence from the idlists of
any two of its (Ic - 1) length subsequences. In partic-
ular, we combine (intersect) 1 the two (Ic - 1) length
subsequences that share a common suffix (the generat-
ing sequences) to compute the support of a new L length
sequence. A simple check on the support of the result-
ing idhst tells us whether the new sequence is frequent
or not.

If we had enough main-memory, we could enumerate
all the frequent sequences by traversing the lattice, and
performing intersections to obtain sequence supports.
In practice, however, we only have a limited amount of
main-memory, and all the intermediate idlists will not
fit in memory. SPADE breaks up this large search space
into small, manageable chunks that can be processed
independently in memory. This is accomplished via
sufix-based equivalence classes (henceforth denoted as
a class). We say that two lc length sequences are in the
same class if they share a common k - 1 length suffix.
The key observation is that each class is a sub-lattice
of the original sequence lattice and can be processed
independently. Each suffix class is independent in the
sense that it has complete information for generating

IDescribed in Zaki 1131.

all frequent sequences that share the same suffix. For
example, if a class [X] has the elements Y C) X, and
2 t) X as the only sequences, the only possible frequent
sequences at the next step can be Y ti 2 ++ X,
2 I+ Y I+ X, and (Y 2) ts X. It should be obvious
that no other item Q can lead to a frequent sequence
with the suffix X, unless (QX) or Q I+ X is also in [Xl.

1

BEGIN Enumerate-Frequent-Seq([S]):
for all elements Ai E [S] do

[Ai] = 0;
for all elements Aj E [S] do

R = Aj U Ai ; /*sequences R formed by generating
subsequences Aj and A; with A; as a suffix*/

id&(R) = idliSt fl idlist(
if support(idlist(R)) > min-sup then

[Ai] = [Ai] U {R};
for all [Ai] # 0 do Enumemte-~uent-Seg([Ai]);

END Enumerate-F’requent-Seq([S]):

l7:- .__.^ CI. XL _____ “--LT.. - n.- ..-.-.. 1 c-. --- r igure a: rmumerwmg rrequem sequences
SPADE recursively decomposes the sequences at each

new level into even smaller independent classes. For
instance, at level one it uses suffix classes of length
one (X,Y), at level two it uses suffix classes of length
two (X c) Y, XY) and so on. We refer to level one
suffix classes as parent classes. These suffix classes are
processed one-by-one. Figure 3 shows the pseudo-code
(simplified for exposition, see [13] for exact details) for
the main procedure of the SPADE algorithm. The input
to the procedure is a class, along with the idlist for
each of its elements. Frequent sequences are generated
by intersecting [13] the idlists of all distinct pairs of
sequences in each class and checking the support of the
resulting idlist against min-sup. The sequences found to
be frequent at the current level form classes for the next
level This level-wise process is recursively repeated
until all frequent sequences have been enumerated. In
terms of memory management, it is easy to see that we
need memory to store intermediate idlists for at most
two consecutive levels. Once all the frequent sequences
for the next level have been generated, the sequences
at the current level can be deleted. For more details on
SPADE, see [13].

4 Incremental Mining Algorithm
Our purpose is to minimize re-computation or re-
scanning of the original database when mining se-
quences in the presence of increments to the database
(the increments are assumed to be appended to the
database, i.e., later in time).

In order to accomplish this, we use an efficient
memory management scheme that indexes into the
database efficiently, and create an Increment Sequence
Lattice (ISL), exploiting its properties to prune the
search space for potential new sequences. The ISL
consists of all elements in the negative border and the
frequent set, and is initially constructed using SPADE.
In the ISL, the children of each nonempty sequence
are its generating subsequences. Each node of the ISL
contains the support for the given sequence.

Theory of Incremental Sequences Let C’, 7” and
I’ be the set of all cid’s, tid’s and items, respectively,
that appear in the incremental part 6. Define D’ to

253

PHASE 1:
1. compute D’(i), D”(i) for all items i
2. for all items i in I’
3. Q.enqueue(S);
4. while (Q is not empty)
5. p = Q.dequeue(); ComputeSupport(
6. if (support(p) 2 mihsup)

PHASE 2:
1. for each item i in NE-to-FS[l]
2. construct suffix class [i];
3. NB-to-FqZ].enqueue([i]);
4. for (k = 2 to . ..)
5. for each class C in N&to-F@]
6. Enumerate-Rkequent-&q(C);

7’. & = length(p);
a. if (p is in the negative border)
9. NB-to-FS[k].enqueue();
10. else if (D’(p) # 0)
11. for all k + l-sequences S in ISL that are
12. generating sscendents of p
13. Q.enqueue(S);

ComputeSupport@):
1. A = generating_subsequencel(p);
2. B = generatingsubsequence2(p);
3. suppwtD#(p) = intersect(D’(A), D’(B));
4. suppoftDll(p) = intersect(D)“(A), D”(B));
5. S?‘ppC?t-t(p) = st‘ppott@) + sU~C.dDl (p)

--SUppdDll (p);

Figure 4: The ISM Algorithm

be the set of all records (in D U 6) with cid in C’ and
D” = D’ \ 6. For the sake of simplicity assume that
there is no new customer added to the database. This
implies that infrequent sequences can become frequent
but not the other way around.

We use the following properties of the lattice to
efficiently perform incremental sequence mining.

By set inclusion-exclusion, we can update the support
of a sequence in FS or NB based on its support in D’
and D”.

suPPortD+d (X) (1)
= supportD(x) + SUPPOrtD, (X) - SupportD,, (X).

This allows us to compute the support at any node in
the lattice quickly, by limiting re-access to the original
database to D’;.

Proposition 1 For every sequence X, if supportD+s (X)
> supportD(X), then the last item of X belongs to I’.

This allows us to limit the nodes in the ISL that are
re-examined to those with descendants in I’.

We call a sequence Y a generating descendant of X
if there exists a list [Zr, 22, . . . , Zm] of sequences such
that Zr = Y, 2, = X, and for every i, 1 < i < m - 1,
Zi is a generating subsequence of &+I. We show that
that if a sequence has become a member of FS U NB in
the updated database, but it was not a member before
the update, then one of its generating descendants was
in NB and now is in FS.

Proposition 2 Let X be a sequence of length at least
2. If X is in FSD+~ U NBD+~ but not in FSD U NBD,
then X has a generating descendant in NBD n FSD+~.

Proof The proof is by induction on k, the length of
X. Let Xr and X2 be the two generating subsequences
of X. Note that if both Xr and X2 belong to FSD then
X is in FSD U NBD, which contradicts our assumption.
Therefore, either Xr or XZ is out of FSD. For the
base case, Ic = 2, since Xi and XZ are of length 1,
by definition both belong to FSD U NBD, and by the
above, at least one must be in NBD. For X to be in
FSD+~ U NBD+G, Xi and Xz must be in FSD+S by
definition. Thus the claim holds, since either Xi or
X2 must be in NBD n FSD+~, and they are generating
descendants of X. For the induction step, suppose

k > 2 and that the claim holds for all k’ < k. Suppose
Xi and XZ are both in FSD U NBD. Then, either
X1 or X2 E NBD. We know X E FSD+~ U NBD+J,
so Xi and X2 belong to FSD+~. Since Xr and X2
are generating subsequences of X, the claim holds for
X. Finally, we have to consider the case where either
Xi or X2 is not in FSD U NBD. We know that as
x E Fs~+a U NBD+~, both Xi and X2 belong to
FSD+~ U NBD+J. NOW suppose that Xi # FSD U NBD.
We know that X is in FSD+~ U NBD+J, X1 is in
Fs~+a U NBD+s. Therefore from the induction step
(since Xr has length less than k) the claim holds for
X1. Let Y be a generating descendant satisfying the
claim for X1. Since Xr is a generating subsequence of
X, Y is also a generating descendant of X. Thus the
claim holds for k. The same argument can be applied
to the case when X2 $ FSD U NBD. cl
Proposition 2 limits the additional sequences (not found
in the original ISL) that need to be examined to update
the ISL.

Memory Management SPADE simply requires per
item idlists. For incremental mining, in order to limit
accesses to customers and items in the increment, we
use a two level disk-file indexing scheme. However,
since the number of customers is unbounded, we use
a hashing mechanism described below.

The vertical database is partitioned into a number of
blocks such that each individual block fits in memory.
Each block contains the vertical representation of all
transactions involving a set of customers. Within each
block there exists an item dereferencing array, pointing
to the first entry for each item. Given a customer,
and an item, we first identify the block containing
the customer’s transactions using a first level cid-index
(hash function). The second item-index then locates
the item within the given block. After this we perform
a linear search for the exact customer identifier. Using
this two level indexing scheme we can quickly jump
to onIy that portion of the database which will be
affected by the update, without having to touch the
entire database. Note that using a vertical data format
we were able to efficiently retrieve all affected item’s
cids, without having to touch the entire database. This
is not possible in the horizontal format, since a given
item can appear in any transaction, which is found by
scanning the entire data.

254

Incremental Sequence Mining (ISM) Algorithm
Our incremental algorithm maintains the incremental
sequence lattice, ISL, which consists of all the frequent
sequences and all sequences in the negative border in
the original database. The support of each member
is kept in the lattice, too. There are two properties
of increments we are concerned with: whether new
customers are added and whether new transactions are
added. We first check whether a new customer is added.
If so, the minimum support in terms of the number of
transactions is raised. We examine the entire ISL from
the l-sequences towards longer and longer sequences to
compute where each sequence belongs. More precisely,
for each sequence X that has been reclassified from
frequent to infrequent, if its two generating sequences
are still frequent we make X as a negative border
element; otherwise, X is eliminated from the lattice.
Then we default to the algorithm described below (see
Figure 4).

The algorithm consists of two phases. Phase 1 is
for updating the supports of elements in NB and FS
and Phase 2 is for adding to NB and FS beyond what
was done in Phase 1. To describe the algorithm, for a
sequence p we represent by D’(p) and D”(p) the vertical
id-list of p in D’ and that in D”, respectively.

Phase 1 begins by generating the single item com-
ponents of ISL: For each single item sequences p, we
compute D’(p) and D”(p) and put p into a queue Q,
which is empty at the beginning of computation. Then
we repeat the following until Q is empty: We dequeue
one element p from Q. We update the support of p us-
ing the subroutine Compute-Support, which computes
the support based on Equation 1. Once the support is
updated, if the sequence p (of length k) is in the fre-
quent set (line lo), all length Ic + 1 sequences that are
already in ISL and that are generating ascendents of p
are queued into Q. If the sequence, p, is in the negative
border (line 8) and its support suggests it is frequent,
then this element is placed in NB-to-FS[k].

At the end of Phase 1, we have exact and up-to-
date supports for all elements in the ISL. We further
have a list of elements that were in the negative border
but have become frequent as a result of the database
increment (in NB-to-FS). In the example in Figures 1
and 2, the following elements had supports updated:
A + A + A,B + A + A,A -+ A + B,B +
A + B,A -+ B + B, and C. Of these, the following
moved from the negative border to the frequent set:
A+A+B,A+B+B,andC.

We next describe Phase 2 (see Figure 4). As to Phase
1, at the end of Phase 1 the NB-to-FS is a list (or
an array) of hash tables containing elements that have
moved from NB to FS. By Proposition 2 these are the
only suffix-based classes we need to examine. For all
l-sequences that have moved we intersect it with all
possible other frequent l-sequences. We add all such
frequent a-sequences into the queue NB-to-FS[2] for
further processing. In our running example in Figures 1
and 2, A + C and B + C are added to the NB-
to-FS[2] table. At the same time all other evaluated
two-sequences involving C that were not frequent are
placed in NBD+J. Thus, C + A,C + B,AC, BC
and C + C are placed in NBD+J. The next step in
Phase 2 is to, starting with the hash table containing

length two sequences, pick an element that has not been
processed and create the list of frequent sets, along
with associated id-lists from D u 6, in its equivalence
class. The next step is to pass the resulting equivalence
class to Enumerate-I+-equent-Set, which adds any new
frequent sequences or new negative border elements and
associated elements to the ISL. We repeat this until
all the NB-to-FS tables are empty. As an example,
let us consider the equivalence class associated with
A + C. From Figures 1 and 2 we see that the only other
frequent sequence of its suffix class is B I+ C. As both
the above sequences are frequent, they are placed in
FSD+J. Recursively enumerating the frequent itemsets
results in the sequences A + A + C and A + B + C
being added to FSD+J. Similarly, the sequences AB +
C, B + A + C, B + B -+ C,A + A -+ A + C,, and
A + A 4 B -+ C are added to NBD+~.
5 Interactive Sequence Mining

The idea in interactive sequence mining is that an end
user be allowed to query the database for association
rules at differing values of support and confidence. The
goal is to allow such interaction without excessive I/O or
computation. Interactive usage of the system normally
involves a lot of manual tuning of parameters and re-
submission of queries that may be very demanding on
the memory subsystem of the server. In most current
algorithms, multiple passes have to be made over the
database for each < support, confidence > pair. This
leads to unacceptable response times for online queries.
Our approach to the problem of supporting such queries
efficiently is to create pre-processed summaries that can
quickly respond to such online queries.

A typical set of queries that such a system could
support include: i) Simple Queries: identify the rules
for support x%, confidence y%, ii) Refined queries:
where the support value is modified (z + y or z - y)
involves the same procedure, iii) Quantified Queries:
identify the k most important rules in terms of support,
confidence pairs or find out for what support/confidence
values can we generate exactly k rules, iv) Including
Queries: find the rules including itemsets ir, . . . , i,,
v) Excluding Queries: compute the rules excluding
itemsets ii,...,&, and vi) Hierarchical Queries:
treat items il (coke) and return the new Eulkl;i” (wp4, = one item (cola)

Our approach to the ’ problem of supporting such
queries efficiently is to adapt the Increment Sequence
Lattice. The preprocessing step of the algorithm
involves computing such a lattice for a small enough
support Smin, such that all future queries will involve a
support S larger than S,,,in. In order to handle certain
queries (Including, Excluding etc.), we modify the
lattice to allow links from a &length sequence to all
its k subsequences of length k - 1 (rather than just
its generating subsequences). Given such a lattice,
we can produce answers to all but one (Hierarchical
queries) of the queries described in the previous section
at interactive speeds without going back to the original
database. This is easy to see as all of the queries will
basically involve a form of pruning over the lattice. A
lattice, as opposed to a flat file containing the relevant
sequences, is an important data structure as it permits
rapid pruning of relevant sequences. Exactly how we do
this is discussed in more detail in [S].

255

Hierarchical queries require the algorithm to treat
a set of related items as one super-item. For example
we may want to treat chips, cookies, peanuts, etc. all
together as a single item called “snacks”. We would
like to know what are the frequent sequences involving
this super-item. To generate the resulting sequences, we
have to modify the SPADE algorithm. We reconstruct
the id-list for the new item (ii,. . . , in) via a special
union operator, and we remove from consideration
the individual items ii,. . . , i,. Then, we rerun the
equivalence class algorithm for this new item and return
the set of frequent sequences.

6 Experimental Evaluation
All the experiments were on a single processor of a
DECStation 4100 using a maximum of 256 MB of
physical memory. The DECStation 4100 contains
4 6OOMHz Alpha 21164 processors. No other user
processes were running at the time. We used different
synthetic databases with size ranging from 20MB
to 55MB, which were generated using the procedure
described in [9]. Although the size of our benchmark
databases fit in memory, our goal is to work with out-
of-core databases. Hence, we assume that the database
resides on disk.

The datasets are generated using the following pro-
cess. First N, itemsets of average size I are generated
by choosing from N items. Then Ns sequences of aver-
age length S are created by assigning itemsets from NI
to each sequence. Next, a customer of average T trans-
actions is created, and sequences in Ns are assigned
to different customer elements, respecting the average
transaction size of T. The generation stops when C
customers have been generated. Table 1 shows the
databases used and their properties. The total number
of transactions is denoted as ID], average transaction
size per customer as T, and the total number of cus-
tomers C. The parameters we used were N = 1000,
NI = 25000,I = 1.25,Ns = 5000,S = 4. Pleasesee [9]
for further details on the dataset generation process.

Table 1: Database properties

To evaluate the incremental algorithm, we modified
the database generation mechanism to construct two
datasets - one corresponding to the original database,
and one corresponding to the increment database. The
input to the generator also included an increment
percentage roughly corresponding to the number of
customers in the increment and the percentage of
transactions for each such customer that belongs in
the increment database. Assuming the database
being looked at is ClOO.TlO, if we set the increment
percentage to 5% and the percentage of transactions
to 20%, then we could expect 5000 customers (5%
of 100,000) to belong to C’, each of which would
contain on average two transactions (20% of 10)
in the increment database. The actual number of
customers in the increment is determined by drawing

from a uniform distribution (increment percentage
as parameter). Similarly, for each customer in the
increment the number of transactions belonging to the
increment is also drawn from a uniform distribution
(transaction percentage as parameter).
Incremental Performance: For the first experiment
(see Figure 5), we varied the increment percentage
for 4 databases while fixing the transaction percentage
to 20%. We ran the SPADE algorithm on the
entire database (original and increment) combined, and
evaluated the cost of running just the incremental
algorithm (after constructing the ISL from the original
database) for increment database values of five, three
and one percent. For each database, we also evaluated
the breakdown of the cost of the incremental algorithm
phases. The results show that the speedups obtained
by using the incremental algorithm in comparison to re-
running the SPADE algorithm over the entire database
range from a factor of 7 to over two orders of magnitude.
As expected, on moving from a larger increment value
to a smaller one, the improvements increase, since there
are fewer new sequences from a smaller increment.

The breakdown figures reveal that the phase one
time is pretty negligible, requiring under 1 second
for all the datasets for all increment values. It also
shows that the phase two times, while an order of
magnitude larger than the phase one times, are still
much faster than re-executing the entire algorithm.
Further, while increasing database size does increase
the overall running time of phase 2, it does not increase
at the same rate as x-e-executing the entire algorithm
for these datasets.

The second experiment we conducted was to vary
the support sizes for a given increment size (l%), and
for two databases. The results for this experiment are
documented in Figure 6. For both databases, as the
support size is increased, the execution time of phase 1
and phase 2 rapidly approaches 0. This is not surprising
when you consider that at higher supports, the number
of elements in the ISL are fewer (affecting phase 1)
and the number of new sequences are much smaller
(affecting phase 2).

The third experiment we conducted was to keep the
support, the number of customers, and the transaction
percentage constant (0.24%, 100,000, and 20% respec-
tively), and vary the number of transactions per cus-
tomer (10, 12, and 15). Figure 7 depicts the breakdown
of the two phases of the ISM algorithm for varying incre-
ment values. We see that moving from 10 to 15 trans-
actions per customer, the execution time of both phases
progressively increases for all database increment sizes.
This is because the number of sequences in the ISL
are more (affecting phasel) and the number of new se-
quences are also more (affecting phsse2).
Interactive Performance: In this section, we evalu-
ate the performance of the interactive queries described
in Section 5. All the interactive query experiments
were performed on a SUN UltraSparc, 167MHz proces-
sor with 256 MB of memory. We envisage off-loading
the interactive querying feature onto client machines as
opposed to executing on the server, and shipping the
results to the data mining client. Thus we wanted to
compare executing interactive queries on a slower ma-
chine. Another reason for evaluating the queries on a

256

Database: CIOOTIO INC Breakdown

Database C2OOTlO INC Breakdown

SPADE s* MC ,S INC I%iNC HWC %plC IWo+c

Figure 5: Incremental Algorithm Pel

Dataset: C 1 OOT 10
16

1

Figure 6: Effect of Varvinn !
INC(O.56) Breakdown vs Transaction Length

II

KccTl*

Databases

” -

Database: C15OTlO INC Breakdown

Database C25OTlO INC Breakdown

nance Comparison (Time in Seconds)

Dataset: C200T 10

SUDDOI-~ in %

support:

Figure 7: Effect of Varying Transaction

ClOO.TlO and C200.TlO
h’ INC(0.3%) Breakdown vs Transaction Length

11 Hhl
INC(O.1%) Breakdown vs Transaction Length

!ngth

257

Table 2: Interactive Performance: Time in Seconds
slower machine is that the relative speeds of the various
interactive queries is better seen on a slower machine
(on the DECs all queries executed in negligible time).

Since hierarchical queries simply entail a modified
execution of phase 2, we do not evaluate it again.
We evaluated simple querying on supports ranging
from O.l%-0.25%, refined querying (support refined to
0.5% for all the datasets), priority querying (querying
for the 50 sequences with highest support), including
queries (including a random item) and excluding queries
(excluding a random item). Results are presented
in Table 2 along with the cost of rerunning the
SPADE algorithm on the DEC machine. We see that
the querying time for refined, priority, including and
excluding queries are very low and capable of achieving
interactive speeds. The priority query takes more time,
since it has to sort the sequences according to support
value, and this sorting dominates the computation time.
Comparing with rerunning SPADE (on a much faster
DEC machine) we see that the interactive querying is
several orders of magnitude faster, in spite of executing
it on a much slower machine.

7 Related Work
Sequence Mining: The concept of sequence mining as
defined in this paper was first described in [9]. Recently,
SPADE [13] wm shown to outperform the algorithm
presented in [9] by a factor of two in the general
case, and by a factor of ten with a pre-processing
step. The problem of finding frequent episodes in a
single long sequence of events was presented in [5].
The problem of discovering patterns in multiple event
sequences was studied in [7]; they search the rule space
directly instead of searching the sequence space and
then forming the rules.
Incremental Sequence Mining: There has been
almost no work addressing the incremental mining
of sequences. One related proposal in [12] uses a
dynamic suffix tree based approach to incremental
mining in a single long sequence. However, we are
dealing with sequences across different customers, i.e.,
multiple sequences of sets of items as opposed to
a single long sequence of items. The other closest
work is in incremental association mining [2, 3, 111
However, there are important differences that make
incremental sequence mining a more difficult problem.
While association rules discover only intra-transaction
patterns (itemsets), we now also have to discover inter-
transaction patterns (sequences). The set of all frequent
sequences is an unbounded superset of the set of
frequent itemsets (bounded). Hence, sequence search is
much more complex and challenging than the itemset
search, thereby further necessitating fast algorithms.
Interactive Sequence Mining A mine-and-examine
paradigm for interactive exploration of associations
and sequence episodes was presented in [4]. Similar
paradigms have been proposed exclusively for associ-

ations [l]. Our interactive approach tackles a different
problem (sequences across different customers) and sup-
ports a wider range of interactive querying features.

8 Conclusions
In this paper, we propose novel techniques that main-
tain data structures for mining sequences in the pres-
ence of a) database updates, and b) user interaction.
Results obtained show speedups from several factors to
two orders of magnitude for incremental mining when
compared with re-executing a state-of-the-art sequence
mining algorithm. Results for interactive approaches
are even better. At the cost of maintaining a summary
data structure, the interactive approach performs sev-
eral orders of magnitude faster than any current se-
quence mining algorithm. One of the limitations of the
incremental approach proposed in this paper is the size
of the negative border, and the resulting memory uti-
lization. We are currently investigating methods to al-
leviate this problem, either by refining the algorithm or
by performing out-of-core computation.

References
PI

PI

[31

[41

[51

PI

171

PI

PI

PO1

PII

WI

1131

C. Aggarwal and P. Yu. Online generation of associations.
In 14th ICDE, 1998.

D. Cheung, J. Han, V. Ng, and C. Wong. Maintenance
of discovered association rules in large databases: an
incremental updating technique. In 12th ICDE, 1996.

IL Feldman, Y. Aumann, A. Amir, and H. Mannila. Efficient
algorithms for discovering frequent sets in incremental
databases. In 2nd DMKD Workshop, 1997.

M. Klemettinen, et al. Finding interesting rules from large
sets of discovered association rules. In 3rd CIKM, 1994.

H. Mannila, H. Toivonen, and I. Verkamo. Discovery of
frequent episodes in event sequences. DMKD Journal,
1(3):259-289, 1997.

R. T. Ng, et al. Exploratory mining and pruning optimiza-
tions of constrained association rules. In SIGMOD Confer-
ence, 1998.

T. Oates, et al. A family of algorithms for finding temporal
structure in data. In 6th Workshop on AI and Statistics,
1997.

S. Parthasarathy, et al. Incremental and interactive sequence
mining. TR715, CS Dept., University of Rochester, June
1999.

R. Srikant and R. Agrawal. Mining sequential patterns:
Generalizations and performance improvements. In 5th
EDBT, 1996.

R. Srikant, Q. Vu, and R. Agrawal. Mining Association Rules
with Item Constraints. In 3rd KDD, 1997.

S. Thomas, S. Bodgaia, K. Alsabti, and S. Ranka. An
efficient algorithm for incremental updation of association
rules in large databases. In 3rd KDD, 199’7.

K. Wang. Discovering patterns from large and dynamic
sequential data. J. Intelligent Information Systems, 9(l),
August 1997.

M. J. Zaki. Efficient enumeration of frequent sequences. In
7th CIKM, 1998.

258

