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Abstract 
The discovery of frequent sequences in temporal databases is an 
important data mining problem. Most current work assumes 
that the database is static, and a database update requires 
rediscovering all the patterns by scanning the entire old and 
new database. In this paper, we propose novel techniques for 
maintaining sequences in the presence of a) database updates, and 
b) user interaction (e.g. modifying mining parameters). This is a 
very challenging task, since such updates can invalidate existing 
sequences or introduce new ones. In both the above scenarios, we 
avoid re-executing the algorithm on the entire dataset, thereby 
reducing execution time. Experimental results confirm that our 
approach results in execution time improvements of up to several 
orders of magnitude in practice. 

1 Introduction 
Sequence mining is an important data mining task, 
where one attempts to discover frequent sequences 
over time, of attribute sets in large databases. This 
problem was originally motivated by applications in 
the retail industry, including attached mailing, add- 
on sales and customer satisfaction. It also applies to 
many scientific and business domains. For instance, in 
the health care industry it can be used for predicting 
the onset of disease from a sequence of symptoms, and 
in the financial industry it can be used for predicting 
investment risk based on a sequence of stock market 
events. 

Discovering all frequent sequences in a very large 
database can be very compute and I/O intensive be- 
cause the search space size is essentially exponential 
in the length of the longest transaction sequence in it. 
This high computational cost may be acceptable when 
the database is static since the discovery is done only 
once, and several approaches to this problem have been 
presented in the literature. However, many domains 
such as electronic commerce, stock analysis, collabo- 
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rative surgery, etc., impose soft real-time constraints 
on the mining process. In such domains, where the 
databases are updated on a regular basis and user in- 
teractions modify the search parameters, running the 
discovery program all over again is infeasible. Hence, 
there is a need for algorithms that maintain valid mined 
information across i) database updates, and ii) user in- 
teractions (modifying/constraining the search space). 

Although the incremental [2, 3, 111 and interactive [l] 
mining problem has been studied for association rules, 
no work has been done for incremental and interac- 
tive sequential patterns. In this paper, we present a 
method for incremental and interactive sequence min- 
ing. Our goal is to minimize the I/O and computation 
requirements for handling incremental updates. Our al- 
gorithm accomplishes this goal by maintaining informa- 
tion about “maximally frequent” and “minimally infre- 
quent” sequences. When incremental data arrives, the 
incremental part is scanned once to incorporate the new 
information. The new data is combined with the “max- 
imal” and “minimal” information in order to determine 
the portions of the original database that need to be 
re-scanned. This process is aided by the use of a verti- 
cal database layout - where attributes are associated 
with the list of transactions in which they occur. The 
result is an improvement in execution time by up to 
several orders of magnitude in practice, both for han- 
dling increments to the database, as well as for handling 
interactive queries. 

The rest of the paper is organized as follows. In 
Section 2, we formulate the sequence discovery problem. 
In Section 3, we describe the SPADE algorithm upon 
which we build our incremental approach. Section 4 
describes our incremental sequence mining algorithm. 
In Section 5, we describe how we support online 
querying. An experimental evaluation is presented in 
Section 6. We discuss related work in Section 7, and 
conclude in Section 8. 

2 Problem Formulation 

In this section, we define the incremental sequence 
mining problem that this paper is concerned with. We 
begin by defining the notation we use. Let the items, 
denoted 1, be the set of all possible attributes. We 
assume a fixed enumeration of all members in Z and 
identify the items with their indices in the enumeration. 
An itemset is a set of items. An itemset is denoted by 
the enumeration of its elements in increasing order. For 
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SEQUENCE LA-t-l-ICE DA-t-ABASE 

Figure 1: Original Database 
SEQUENCE LAl-IlCE 

Figure 2: Original plus Incremental Database and Lattice 

an itemset i, its size, denoted by [iI, is the number of 
elements in it. An itemset of size k is called a k-itemset. 

A sequence is an ordered list (ordered in time) of non- 
empty itemsets. A sequence of itemsets cyi, . . . , on is 
denoted by (or I+ . . . I+ a,). The length of a sequence 
is the sum of the sizes of each of its itemsets. For 
each integer k, a sequence of length k is called a k- 
sequence. A sequence CK is a subsequence of a sequence 
p, denoted by Q 5 /3, if (Y can be constructed from 
p by striking out some (or none) of the items in @, 
and then by eliminating all the occurrences of 0 c) 
and c) 0 one at a time. For example, B ti AC is a 
subsequence of AB ti E H ACD. We say that a is 
a proper subsequence of /3, denoted cr < p, if o # /3 
and CY 5 ,O. For k 13, the generating subsequences of a 
length k sequence are the two length k - 1 subsequences 
of cr obtained by dropping exactly one of its first or 
second items. By definition, the generating sequences 
share a common suffix of length k - 2. For example, 
the two generating subsequences of Al3 C) CD C) E 
are A c-) CD r-) E and B I+ CD I+ E, and they share 
the common suffix CD c) E. A sequence is maximal 
in a collection C of sequences if the sequence is not a 
subsequence of any other sequence in C. 

Our database is a collection of customers, each with 
a sequence of transactions, each of which is an itemset. 
For a database D and a sequence (.II, the support or 
frequency of a in D, denoted by support,( is the 
number of customers in D whose sequences contain a 
as a subsequence. The minimum-support, denoted by 

m&-support, is a user-specified threshold that is used 
to define “frequent sequences”: a sequence is frequent 
in D if its support in D is at least min-support. A rule 
A u B involving sequence A and sequence B is said to 
have confidence c if c% of the customers that contain 
A also contain B. Suppose that new data S is to be 
added to a database D. Then we call D the original 
database and 6 the incremental database. The updated 
database is denoted by D + 6. For each k 2 1, T; 
denotes the collection of all frequent sequences of length 
k in the updated database. Also FS denotes the set of 
all frequent sequences in the updated database. The 
negative border (NB) is the collection of all sequences 
that are not frequent but both of whose generating 
subsequences are frequent. By the old sequences, we 
mean the set of all frequent sequences in the original 
database and by the new sequences we mean the set of 
all frequent sequences in the join of the original and the 
increment. 

For example, consider the customer database shown 
in Figure 1. The database has three items (A,B, C), 
and four customers. The figure also shows the Incre- 
ment Sequence Lattice (ISL) with all the frequent se- 
quences (the frequency is also shown with each node) 
and the negative border, when a minimum support 
of 75%, or 3 customers, is used. For each frequent 
sequence, the figure shows its two generating subse- 
quences in bold lines. Figure 2 shows how the frequent 
set and the negative border change when we mine over 
the combined original and incremental database (high- 
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lighted in dark grey). For example, C is not frequent 
in the original database D, but C (along with some of 
its supersequences) becomes frequent after the update 
6. The update also causes some elements to move from 
NB to the new FS. 
Incremental Sequence Discovery Problem: Given 
an original database D of sequences, and a new incre- 
ment to the database 6, find all frequent sequences in 
the database D + 6, with minimum possible recompu- 
tation and I/O. 

3 The SPADE Algorithm 
In this section we describe SPADE [13], an algorithm 
for fast discovery of frequent sequences, which forms the 
basis for our incremental algorithm. 
Sequence Lattice: SPADE uses the observation that 
the subsequence relation 4 defines a partial order on the 
set of sequences, i.e., if /3 & a frequent sequence, then all 
subsequences a! 5 /3 are also frequent. The algorithm 
systematically searches the sequence lattice spanned by 
the subsequence relation, from the most general (single 
items) to the most specific frequent sequences (maximal 
sequences) in a depth-first manner. For instance, in 
Figure 1, the bold lines correspond to the lattice for the 
example dataset. 
Support Counting: Most of the current sequence 
mining algorithms 191 assume a hordzontal database 
layout such as the one shown in Figure 1. In 
the horizontal format, the database consists of a set 
of customers ( cid ‘s) . Each customer has a set of 
transactions (tid’s), along with the items contained in 
the transaction. In contrast, we use a vertical database 
layout, where we associate with each item X in the 
sequence lattice its idlist, denoted C(X), which is a 
list of all customer (cid) and transaction identifier (tid) 
pairs containing the item. For example, the idlist for 
the item C in the original database (Figure 1) would 
consist of the tuples { < 2,20 >, < 2,30 >}. 

Given the per item idlists, we can iteratively deter- 
mine the support of any L-sequence from the idlists of 
any two of its (Ic - 1) length subsequences. In partic- 
ular, we combine (intersect) 1 the two (Ic - 1) length 
subsequences that share a common suffix (the generat- 
ing sequences) to compute the support of a new L length 
sequence. A simple check on the support of the result- 
ing idhst tells us whether the new sequence is frequent 
or not. 

If we had enough main-memory, we could enumerate 
all the frequent sequences by traversing the lattice, and 
performing intersections to obtain sequence supports. 
In practice, however, we only have a limited amount of 
main-memory, and all the intermediate idlists will not 
fit in memory. SPADE breaks up this large search space 
into small, manageable chunks that can be processed 
independently in memory. This is accomplished via 
sufix-based equivalence classes (henceforth denoted as 
a class). We say that two lc length sequences are in the 
same class if they share a common k - 1 length suffix. 
The key observation is that each class is a sub-lattice 
of the original sequence lattice and can be processed 
independently. Each suffix class is independent in the 
sense that it has complete information for generating 
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all frequent sequences that share the same suffix. For 
example, if a class [X] has the elements Y C) X, and 
2 t) X as the only sequences, the only possible frequent 
sequences at the next step can be Y ti 2 ++ X, 
2 I+ Y I+ X, and (Y 2) ts X. It should be obvious 
that no other item Q can lead to a frequent sequence 
with the suffix X, unless (QX) or Q I+ X is also in [Xl. 

1 

BEGIN Enumerate-Frequent-Seq([S]): 
for all elements Ai E [S] do 

[Ai] = 0; 
for all elements Aj E [S] do 

R = Aj U Ai ; /*sequences R formed by generating 
subsequences Aj and A; with A; as a suffix*/ 

id&(R) = idliSt fl idlist( 
if support(idlist(R)) > min-sup then 

[Ai] = [Ai] U {R}; 
for all [Ai] # 0 do Enumemte-~uent-Seg([Ai]); 

END Enumerate-F’requent-Seq([S]): 

l7:- .__.^ CI. XL _____ “--LT.. - n.- ..-.-.. 1 c-. --- r igure a: rmumerwmg rrequem sequences 
SPADE recursively decomposes the sequences at each 

new level into even smaller independent classes. For 
instance, at level one it uses suffix classes of length 
one (X,Y), at level two it uses suffix classes of length 
two (X c) Y, XY) and so on. We refer to level one 
suffix classes as parent classes. These suffix classes are 
processed one-by-one. Figure 3 shows the pseudo-code 
(simplified for exposition, see [13] for exact details) for 
the main procedure of the SPADE algorithm. The input 
to the procedure is a class, along with the idlist for 
each of its elements. Frequent sequences are generated 
by intersecting [13] the idlists of all distinct pairs of 
sequences in each class and checking the support of the 
resulting idlist against min-sup. The sequences found to 
be frequent at the current level form classes for the next 
level This level-wise process is recursively repeated 
until all frequent sequences have been enumerated. In 
terms of memory management, it is easy to see that we 
need memory to store intermediate idlists for at most 
two consecutive levels. Once all the frequent sequences 
for the next level have been generated, the sequences 
at the current level can be deleted. For more details on 
SPADE, see [13]. 

4 Incremental Mining Algorithm 
Our purpose is to minimize re-computation or re- 
scanning of the original database when mining se- 
quences in the presence of increments to the database 
(the increments are assumed to be appended to the 
database, i.e., later in time). 

In order to accomplish this, we use an efficient 
memory management scheme that indexes into the 
database efficiently, and create an Increment Sequence 
Lattice (ISL), exploiting its properties to prune the 
search space for potential new sequences. The ISL 
consists of all elements in the negative border and the 
frequent set, and is initially constructed using SPADE. 
In the ISL, the children of each nonempty sequence 
are its generating subsequences. Each node of the ISL 
contains the support for the given sequence. 

Theory of Incremental Sequences Let C’, 7” and 
I’ be the set of all cid’s, tid’s and items, respectively, 
that appear in the incremental part 6. Define D’ to 

253 



PHASE 1: 
1. compute D’(i), D”(i) for all items i 
2. for all items i in I’ 
3. Q.enqueue(S); 
4. while (Q is not empty) 
5. p = Q.dequeue(); ComputeSupport( 
6. if (support(p) 2 mihsup ) 

PHASE 2: 
1. for each item i in NE-to-FS[l] 
2. construct suffix class [i]; 
3. NB-to-FqZ].enqueue( [i]); 
4. for (k = 2 to . ..) 
5. for each class C in N&to-F@] 
6. Enumerate-Rkequent-&q(C); 

7’. & = length(p); 
a. if (p is in the negative border) 
9. NB-to-FS[k].enqueue(); 
10. else if (D’(p) # 0) 
11. for all k + l-sequences S in ISL that are 
12. generating sscendents of p 
13. Q.enqueue(S); 

ComputeSupport@): 
1. A = generating_subsequencel(p); 
2. B = generatingsubsequence2(p); 
3. suppwtD#(p) = intersect(D’(A), D’(B)); 
4. suppoftDll(p) = intersect(D)“(A), D”(B)); 
5. S?‘ppC?t-t(p) = st‘ppott@) + sU~C.dDl (p) 

--SUppdDll (p); 

Figure 4: The ISM Algorithm 

be the set of all records (in D U 6) with cid in C’ and 
D” = D’ \ 6. For the sake of simplicity assume that 
there is no new customer added to the database. This 
implies that infrequent sequences can become frequent 
but not the other way around. 

We use the following properties of the lattice to 
efficiently perform incremental sequence mining. 

By set inclusion-exclusion, we can update the support 
of a sequence in FS or NB based on its support in D’ 
and D”. 

suPPortD+d (X) (1) 
= supportD(x) + SUPPOrtD, (X) - SupportD,, (X). 

This allows us to compute the support at any node in 
the lattice quickly, by limiting re-access to the original 
database to D’;. 

Proposition 1 For every sequence X, if supportD+s (X) 
> supportD(X), then the last item of X belongs to I’. 

This allows us to limit the nodes in the ISL that are 
re-examined to those with descendants in I’. 

We call a sequence Y a generating descendant of X 
if there exists a list [Zr, 22, . . . , Zm] of sequences such 
that Zr = Y, 2, = X, and for every i, 1 < i < m - 1, 
Zi is a generating subsequence of &+I. We show that 
that if a sequence has become a member of FS U NB in 
the updated database, but it was not a member before 
the update, then one of its generating descendants was 
in NB and now is in FS. 

Proposition 2 Let X be a sequence of length at least 
2. If X is in FSD+~ U NBD+~ but not in FSD U NBD, 
then X has a generating descendant in NBD n FSD+~. 

Proof The proof is by induction on k, the length of 
X. Let Xr and X2 be the two generating subsequences 
of X. Note that if both Xr and X2 belong to FSD then 
X is in FSD U NBD, which contradicts our assumption. 
Therefore, either Xr or XZ is out of FSD. For the 
base case, Ic = 2, since Xi and XZ are of length 1, 
by definition both belong to FSD U NBD, and by the 
above, at least one must be in NBD. For X to be in 
FSD+~ U NBD+G, Xi and Xz must be in FSD+S by 
definition. Thus the claim holds, since either Xi or 
X2 must be in NBD n FSD+~, and they are generating 
descendants of X. For the induction step, suppose 

k > 2 and that the claim holds for all k’ < k. Suppose 
Xi and XZ are both in FSD U NBD. Then, either 
X1 or X2 E NBD. We know X E FSD+~ U NBD+J, 
so Xi and X2 belong to FSD+~. Since Xr and X2 
are generating subsequences of X, the claim holds for 
X. Finally, we have to consider the case where either 
Xi or X2 is not in FSD U NBD. We know that as 
x E Fs~+a U NBD+~, both Xi and X2 belong to 
FSD+~ U NBD+J. NOW suppose that Xi # FSD U NBD. 
We know that X is in FSD+~ U NBD+J, X1 is in 
Fs~+a U NBD+s. Therefore from the induction step 
(since Xr has length less than k) the claim holds for 
X1. Let Y be a generating descendant satisfying the 
claim for X1. Since Xr is a generating subsequence of 
X, Y is also a generating descendant of X. Thus the 
claim holds for k. The same argument can be applied 
to the case when X2 $ FSD U NBD. cl 
Proposition 2 limits the additional sequences (not found 
in the original ISL) that need to be examined to update 
the ISL. 

Memory Management SPADE simply requires per 
item idlists. For incremental mining, in order to limit 
accesses to customers and items in the increment, we 
use a two level disk-file indexing scheme. However, 
since the number of customers is unbounded, we use 
a hashing mechanism described below. 

The vertical database is partitioned into a number of 
blocks such that each individual block fits in memory. 
Each block contains the vertical representation of all 
transactions involving a set of customers. Within each 
block there exists an item dereferencing array, pointing 
to the first entry for each item. Given a customer, 
and an item, we first identify the block containing 
the customer’s transactions using a first level cid-index 
(hash function). The second item-index then locates 
the item within the given block. After this we perform 
a linear search for the exact customer identifier. Using 
this two level indexing scheme we can quickly jump 
to onIy that portion of the database which will be 
affected by the update, without having to touch the 
entire database. Note that using a vertical data format 
we were able to efficiently retrieve all affected item’s 
cids, without having to touch the entire database. This 
is not possible in the horizontal format, since a given 
item can appear in any transaction, which is found by 
scanning the entire data. 
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Incremental Sequence Mining (ISM) Algorithm 
Our incremental algorithm maintains the incremental 
sequence lattice, ISL, which consists of all the frequent 
sequences and all sequences in the negative border in 
the original database. The support of each member 
is kept in the lattice, too. There are two properties 
of increments we are concerned with: whether new 
customers are added and whether new transactions are 
added. We first check whether a new customer is added. 
If so, the minimum support in terms of the number of 
transactions is raised. We examine the entire ISL from 
the l-sequences towards longer and longer sequences to 
compute where each sequence belongs. More precisely, 
for each sequence X that has been reclassified from 
frequent to infrequent, if its two generating sequences 
are still frequent we make X as a negative border 
element; otherwise, X is eliminated from the lattice. 
Then we default to the algorithm described below (see 
Figure 4). 

The algorithm consists of two phases. Phase 1 is 
for updating the supports of elements in NB and FS 
and Phase 2 is for adding to NB and FS beyond what 
was done in Phase 1. To describe the algorithm, for a 
sequence p we represent by D’(p) and D”(p) the vertical 
id-list of p in D’ and that in D”, respectively. 

Phase 1 begins by generating the single item com- 
ponents of ISL: For each single item sequences p, we 
compute D’(p) and D”(p) and put p into a queue Q, 
which is empty at the beginning of computation. Then 
we repeat the following until Q is empty: We dequeue 
one element p from Q. We update the support of p us- 
ing the subroutine Compute-Support, which computes 
the support based on Equation 1. Once the support is 
updated, if the sequence p (of length k) is in the fre- 
quent set (line lo), all length Ic + 1 sequences that are 
already in ISL and that are generating ascendents of p 
are queued into Q. If the sequence, p, is in the negative 
border (line 8) and its support suggests it is frequent, 
then this element is placed in NB-to-FS[k]. 

At the end of Phase 1, we have exact and up-to- 
date supports for all elements in the ISL. We further 
have a list of elements that were in the negative border 
but have become frequent as a result of the database 
increment (in NB-to-FS). In the example in Figures 1 
and 2, the following elements had supports updated: 
A + A + A,B + A + A,A -+ A + B,B + 
A + B,A -+ B + B, and C. Of these, the following 
moved from the negative border to the frequent set: 
A+A+B,A+B+B,andC. 

We next describe Phase 2 (see Figure 4). As to Phase 
1, at the end of Phase 1 the NB-to-FS is a list (or 
an array) of hash tables containing elements that have 
moved from NB to FS. By Proposition 2 these are the 
only suffix-based classes we need to examine. For all 
l-sequences that have moved we intersect it with all 
possible other frequent l-sequences. We add all such 
frequent a-sequences into the queue NB-to-FS[2] for 
further processing. In our running example in Figures 1 
and 2, A + C and B + C are added to the NB- 
to-FS[2] table. At the same time all other evaluated 
two-sequences involving C that were not frequent are 
placed in NBD+J. Thus, C + A,C + B,AC, BC 
and C + C are placed in NBD+J. The next step in 
Phase 2 is to, starting with the hash table containing 

length two sequences, pick an element that has not been 
processed and create the list of frequent sets, along 
with associated id-lists from D u 6, in its equivalence 
class. The next step is to pass the resulting equivalence 
class to Enumerate-I+-equent-Set, which adds any new 
frequent sequences or new negative border elements and 
associated elements to the ISL. We repeat this until 
all the NB-to-FS tables are empty. As an example, 
let us consider the equivalence class associated with 
A + C. From Figures 1 and 2 we see that the only other 
frequent sequence of its suffix class is B I+ C. As both 
the above sequences are frequent, they are placed in 
FSD+J. Recursively enumerating the frequent itemsets 
results in the sequences A + A + C and A + B + C 
being added to FSD+J. Similarly, the sequences AB + 
C, B + A + C, B + B -+ C,A + A -+ A + C,, and 
A + A 4 B -+ C are added to NBD+~. 
5 Interactive Sequence Mining 

The idea in interactive sequence mining is that an end 
user be allowed to query the database for association 
rules at differing values of support and confidence. The 
goal is to allow such interaction without excessive I/O or 
computation. Interactive usage of the system normally 
involves a lot of manual tuning of parameters and re- 
submission of queries that may be very demanding on 
the memory subsystem of the server. In most current 
algorithms, multiple passes have to be made over the 
database for each < support, confidence > pair. This 
leads to unacceptable response times for online queries. 
Our approach to the problem of supporting such queries 
efficiently is to create pre-processed summaries that can 
quickly respond to such online queries. 

A typical set of queries that such a system could 
support include: i) Simple Queries: identify the rules 
for support x%, confidence y%, ii) Refined queries: 
where the support value is modified (z + y or z - y) 
involves the same procedure, iii) Quantified Queries: 
identify the k most important rules in terms of support, 
confidence pairs or find out for what support/confidence 
values can we generate exactly k rules, iv) Including 
Queries: find the rules including itemsets ir, . . . , i,, 
v) Excluding Queries: compute the rules excluding 
itemsets ii,...,&, and vi) Hierarchical Queries: 
treat items il (coke) and return the new Eulkl;i” (wp4, = one item (cola) 

Our approach to the ’ problem of supporting such 
queries efficiently is to adapt the Increment Sequence 
Lattice. The preprocessing step of the algorithm 
involves computing such a lattice for a small enough 
support Smin, such that all future queries will involve a 
support S larger than S,,,in. In order to handle certain 
queries (Including, Excluding etc.), we modify the 
lattice to allow links from a &length sequence to all 
its k subsequences of length k - 1 (rather than just 
its generating subsequences). Given such a lattice, 
we can produce answers to all but one (Hierarchical 
queries) of the queries described in the previous section 
at interactive speeds without going back to the original 
database. This is easy to see as all of the queries will 
basically involve a form of pruning over the lattice. A 
lattice, as opposed to a flat file containing the relevant 
sequences, is an important data structure as it permits 
rapid pruning of relevant sequences. Exactly how we do 
this is discussed in more detail in [S]. 
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Hierarchical queries require the algorithm to treat 
a set of related items as one super-item. For example 
we may want to treat chips, cookies, peanuts, etc. all 
together as a single item called “snacks”. We would 
like to know what are the frequent sequences involving 
this super-item. To generate the resulting sequences, we 
have to modify the SPADE algorithm. We reconstruct 
the id-list for the new item (ii,. . . , in) via a special 
union operator, and we remove from consideration 
the individual items ii,. . . , i,. Then, we rerun the 
equivalence class algorithm for this new item and return 
the set of frequent sequences. 

6 Experimental Evaluation 
All the experiments were on a single processor of a 
DECStation 4100 using a maximum of 256 MB of 
physical memory. The DECStation 4100 contains 
4 6OOMHz Alpha 21164 processors. No other user 
processes were running at the time. We used different 
synthetic databases with size ranging from 20MB 
to 55MB, which were generated using the procedure 
described in [9]. Although the size of our benchmark 
databases fit in memory, our goal is to work with out- 
of-core databases. Hence, we assume that the database 
resides on disk. 

The datasets are generated using the following pro- 
cess. First N, itemsets of average size I are generated 
by choosing from N items. Then Ns sequences of aver- 
age length S are created by assigning itemsets from NI 
to each sequence. Next, a customer of average T trans- 
actions is created, and sequences in Ns are assigned 
to different customer elements, respecting the average 
transaction size of T. The generation stops when C 
customers have been generated. Table 1 shows the 
databases used and their properties. The total number 
of transactions is denoted as ID], average transaction 
size per customer as T, and the total number of cus- 
tomers C. The parameters we used were N = 1000, 
NI = 25000,I = 1.25,Ns = 5000,S = 4. Pleasesee [9] 
for further details on the dataset generation process. 

Table 1: Database properties 

To evaluate the incremental algorithm, we modified 
the database generation mechanism to construct two 
datasets - one corresponding to the original database, 
and one corresponding to the increment database. The 
input to the generator also included an increment 
percentage roughly corresponding to the number of 
customers in the increment and the percentage of 
transactions for each such customer that belongs in 
the increment database. Assuming the database 
being looked at is ClOO.TlO, if we set the increment 
percentage to 5% and the percentage of transactions 
to 20%, then we could expect 5000 customers (5% 
of 100,000) to belong to C’, each of which would 
contain on average two transactions (20% of 10) 
in the increment database. The actual number of 
customers in the increment is determined by drawing 

from a uniform distribution (increment percentage 
as parameter). Similarly, for each customer in the 
increment the number of transactions belonging to the 
increment is also drawn from a uniform distribution 
(transaction percentage as parameter). 
Incremental Performance: For the first experiment 
(see Figure 5), we varied the increment percentage 
for 4 databases while fixing the transaction percentage 
to 20%. We ran the SPADE algorithm on the 
entire database (original and increment) combined, and 
evaluated the cost of running just the incremental 
algorithm (after constructing the ISL from the original 
database) for increment database values of five, three 
and one percent. For each database, we also evaluated 
the breakdown of the cost of the incremental algorithm 
phases. The results show that the speedups obtained 
by using the incremental algorithm in comparison to re- 
running the SPADE algorithm over the entire database 
range from a factor of 7 to over two orders of magnitude. 
As expected, on moving from a larger increment value 
to a smaller one, the improvements increase, since there 
are fewer new sequences from a smaller increment. 

The breakdown figures reveal that the phase one 
time is pretty negligible, requiring under 1 second 
for all the datasets for all increment values. It also 
shows that the phase two times, while an order of 
magnitude larger than the phase one times, are still 
much faster than re-executing the entire algorithm. 
Further, while increasing database size does increase 
the overall running time of phase 2, it does not increase 
at the same rate as x-e-executing the entire algorithm 
for these datasets. 

The second experiment we conducted was to vary 
the support sizes for a given increment size (l%), and 
for two databases. The results for this experiment are 
documented in Figure 6. For both databases, as the 
support size is increased, the execution time of phase 1 
and phase 2 rapidly approaches 0. This is not surprising 
when you consider that at higher supports, the number 
of elements in the ISL are fewer (affecting phase 1) 
and the number of new sequences are much smaller 
(affecting phase 2). 

The third experiment we conducted was to keep the 
support, the number of customers, and the transaction 
percentage constant (0.24%, 100,000, and 20% respec- 
tively), and vary the number of transactions per cus- 
tomer (10, 12, and 15). Figure 7 depicts the breakdown 
of the two phases of the ISM algorithm for varying incre- 
ment values. We see that moving from 10 to 15 trans- 
actions per customer, the execution time of both phases 
progressively increases for all database increment sizes. 
This is because the number of sequences in the ISL 
are more (affecting phasel) and the number of new se- 
quences are also more (affecting phsse2). 
Interactive Performance: In this section, we evalu- 
ate the performance of the interactive queries described 
in Section 5. All the interactive query experiments 
were performed on a SUN UltraSparc, 167MHz proces- 
sor with 256 MB of memory. We envisage off-loading 
the interactive querying feature onto client machines as 
opposed to executing on the server, and shipping the 
results to the data mining client. Thus we wanted to 
compare executing interactive queries on a slower ma- 
chine. Another reason for evaluating the queries on a 
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Table 2: Interactive Performance: Time in Seconds 
slower machine is that the relative speeds of the various 
interactive queries is better seen on a slower machine 
(on the DECs all queries executed in negligible time). 

Since hierarchical queries simply entail a modified 
execution of phase 2, we do not evaluate it again. 
We evaluated simple querying on supports ranging 
from O.l%-0.25%, refined querying (support refined to 
0.5% for all the datasets), priority querying (querying 
for the 50 sequences with highest support), including 
queries (including a random item) and excluding queries 
(excluding a random item). Results are presented 
in Table 2 along with the cost of rerunning the 
SPADE algorithm on the DEC machine. We see that 
the querying time for refined, priority, including and 
excluding queries are very low and capable of achieving 
interactive speeds. The priority query takes more time, 
since it has to sort the sequences according to support 
value, and this sorting dominates the computation time. 
Comparing with rerunning SPADE (on a much faster 
DEC machine) we see that the interactive querying is 
several orders of magnitude faster, in spite of executing 
it on a much slower machine. 

7 Related Work 
Sequence Mining: The concept of sequence mining as 
defined in this paper was first described in [9]. Recently, 
SPADE [13] wm shown to outperform the algorithm 
presented in [9] by a factor of two in the general 
case, and by a factor of ten with a pre-processing 
step. The problem of finding frequent episodes in a 
single long sequence of events was presented in [5]. 
The problem of discovering patterns in multiple event 
sequences was studied in [7]; they search the rule space 
directly instead of searching the sequence space and 
then forming the rules. 
Incremental Sequence Mining: There has been 
almost no work addressing the incremental mining 
of sequences. One related proposal in [12] uses a 
dynamic suffix tree based approach to incremental 
mining in a single long sequence. However, we are 
dealing with sequences across different customers, i.e., 
multiple sequences of sets of items as opposed to 
a single long sequence of items. The other closest 
work is in incremental association mining [2, 3, 111 
However, there are important differences that make 
incremental sequence mining a more difficult problem. 
While association rules discover only intra-transaction 
patterns (itemsets), we now also have to discover inter- 
transaction patterns (sequences). The set of all frequent 
sequences is an unbounded superset of the set of 
frequent itemsets (bounded). Hence, sequence search is 
much more complex and challenging than the itemset 
search, thereby further necessitating fast algorithms. 
Interactive Sequence Mining A mine-and-examine 
paradigm for interactive exploration of associations 
and sequence episodes was presented in [4]. Similar 
paradigms have been proposed exclusively for associ- 

ations [l]. Our interactive approach tackles a different 
problem (sequences across different customers) and sup- 
ports a wider range of interactive querying features. 

8 Conclusions 
In this paper, we propose novel techniques that main- 
tain data structures for mining sequences in the pres- 
ence of a) database updates, and b) user interaction. 
Results obtained show speedups from several factors to 
two orders of magnitude for incremental mining when 
compared with re-executing a state-of-the-art sequence 
mining algorithm. Results for interactive approaches 
are even better. At the cost of maintaining a summary 
data structure, the interactive approach performs sev- 
eral orders of magnitude faster than any current se- 
quence mining algorithm. One of the limitations of the 
incremental approach proposed in this paper is the size 
of the negative border, and the resulting memory uti- 
lization. We are currently investigating methods to al- 
leviate this problem, either by refining the algorithm or 
by performing out-of-core computation. 
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